In this article we present a new method for reconstructing three-dimensional (3D) images with cylindrical symmetry from their two-dimensional projections. The method is based on expanding the projection in a basis set of functions that are analytical projections of known well-behaved functions. The original 3D image can then be reconstructed as a linear combination of these well-behaved functions, which have a Gaussian-like shape, with the same expansion coefficients as the projection. In the process of finding the expansion coefficients, regularization is used to achieve a more reliable reconstruction of noisy projections. The method is efficient and computationally cheap and is particularly well suited for transforming projections obtained in photoion and photoelectron imaging experiments. It can be used for any image with cylindrical symmetry, requires minimal user’s input, and provides a reliable reconstruction in certain cases when the commonly used Fourier–Hankel Abel transform method fails.

1.
A. G.
Suits
and
R. E.
Continetti
,
ACS Symp. Ser.
770
(
2001
) and papers therein.
2.
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
3.
Y.
Tanaka
,
M.
Kawasaki
,
Y.
Matsumi
,
H.
Fujiwara
,
T.
Ishiwata
,
L. J.
Rogers
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
109
,
1315
(
1998
).
4.
B.-Y.
Chang
,
R. C.
Hoetzlein
,
J. A.
Mueller
,
J. D.
Geiser
, and
P. L.
Houston
,
Rev. Sci. Instrum.
69
,
1665
(
1998
).
5.
F. B. Hildebrand, Methods of Applied Mathematics (Prentice-Hall, Englewood Cliffs, NJ, 1952).
6.
R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1978).
7.
K.
Bockasten
,
J. Opt. Soc. Am.
51
,
943
(
1961
).
8.
M. P.
Freeman
and
S.
Katz
,
J. Opt. Soc. Am.
53
,
1172
(
1963
).
9.
C. J.
Cremers
and
R. C.
Birkebak
,
Appl. Opt.
5
,
1057
(
1966
).
10.
L. M.
Smith
,
D. R.
Keefer
, and
S. I.
Sudharsanan
,
J. Quant. Spectrosc. Radiat. Transf.
39
,
367
(
1988
).
11.
Y.
Sato
,
Y.
Matsumi
,
M.
Kawasaki
,
K.
Tsukiyama
, and
R.
Bersohn
,
J. Phys. Chem.
99
,
16307
(
1995
).
12.
C.
Bordas
,
F.
Paulig
,
H.
Helm
, and
D. L.
Huestis
,
Rev. Sci. Instrum.
67
,
2257
(
1996
).
13.
J.
Winterhalter
,
D.
Maier
,
J.
Honerkamp
,
V.
Schyja
, and
H.
Helm
,
J. Chem. Phys.
110
,
11187
(
1999
).
14.
M. J. J.
Vrakking
,
Rev. Sci. Instrum.
72
,
4084
(
2001
).
15.
R. N.
Strickland
and
D. W.
Chandler
,
Appl. Opt.
30
,
1811
(
1991
).
16.
A. N.
Tikhonov
,
Sov. Math. Dokl.
4
,
1035
(
1963
).
17.
R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).
18.
V.
Dribinski
,
A. B.
Potter
,
A. V.
Demyanenko
, and
H.
Reisler
,
J. Chem. Phys.
115
,
7474
(
2001
).
19.
D. H.
Parker
and
A. T. J. B.
Eppink
,
J. Chem. Phys.
107
,
2357
(
1997
);
(private communication).
20.
A.
Neumaier
,
SIAM Rev.
40
,
636
(
1998
).
21.
A Windows-compatible version of the code is available by contacting H. Reisler at [email protected]
This content is only available via PDF.
You do not currently have access to this content.