A high pressure photoemission system is described that combines differential pumping with an electrostatic lens system. This approach allows optimized differential pumping without loss of signal, thereby increasing the high-pressure performance by at least 2 orders of magnitude compared to passive differential pumping systems. A general analysis of aperture-based high-pressure photoemission is presented, followed by a description of the prototype system which has operated at pressures up to 7 mbar on a synchrotron beamline. Using this approach, photoemission experiments should be possible up to 100 mbar. Example data are presented for dielectric samples in gas atmospheres, for a copper catalyst under reaction conditions, and for liquid water in equilibrium with its vapor.

1.
Practical Surface Analysis, 2nd ed., edited by D. Briggs and M. P. Seah (Wiley, New York, 1990), Vol. 1.
2.
J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 1992).
3.
X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, edited by D. C. Koningsberger and R. Prins (Wiley, New York, 1988).
4.
C. S.
Fadley
,
M. A.
Van Hove
,
Z.
Hussain
, and
A. P.
Kaduwela
,
J. Electron Spectrosc. Relat. Phenom.
75
,
273
(
1995
).
5.
K. Siegbahn et al., ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1969).
6.
H.
Siegbahn
and
K.
Siegbahn
,
J. Electron Spectrosc. Relat. Phenom.
2
,
319
(
1973
);
H.
Fellner-Feldegg
,
H.
Siegbahn
,
L.
Asplund
,
P.
Kelfve
, and
K.
Siegbahn
,
J. Electron Spectrosc. Relat. Phenom.
7
,
421
(
1975
);
H.
Siegbahn
,
S.
Svensson
, and
M.
Lundholm
,
J. Electron Spectrosc. Relat. Phenom.
24
,
205
(
1981
).
7.
R. W.
Joyner
,
M. W.
Roberts
, and
K.
Yates
,
Surf. Sci.
87
,
501
(
1979
).
8.
H. J.
Ruppender
,
M.
Grunze
,
C. W.
Kong
, and
M.
Wilmers
,
Surf. Interface Anal.
15
,
245
(
1990
).
9.
M. A.
Kelly
,
M. L.
Shek
,
P.
Pianetta
,
T. M.
Gür
, and
M. R.
Beasley
,
J. Vac. Sci. Technol. A
19
,
2127
(
2001
).
10.
A. Nilsson (unpublished results).
11.
H.
Bluhm
,
D. F.
Ogletree
,
C. S.
Fadley
,
Z.
Hussain
, and
M.
Salmeron
,
J. Phys.: Condens. Matter
14
,
L227
(
2002
).
12.
H. Bluhm, M. Hävecker, A. Knop-Gericke, V. I. Bukhtiyarov, D. F. Ogletree, M. Salmeron, and R. Schlögl (unpublished).
13.
See any standard text on statistical thermodynamics, for example, F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, 3rd ed. (Addison Wesley, Reading, MA, 1975).
14.
See Ref. 1, p. 209.
15.
D. R. Miller, in Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University Press, New York, 1988).
16.
The Physical Electronics hemispherical capacitor analyzer used in the prototype HPPES system has a maximum acceptance of ∼7°. The Specs Phoibos 150 analyzer that will be used for the second generation system has a maximum acceptance of ∼9°.
17.
PHI 360 SCA with Omni IV input lens and a 16 anode channel-plate detector: Physical Electronics, Inc., Eden Prairie, MN.
18.
MacroTorr 250, Varian Vacuum Technologies, Lexington, MA.
19.
MKS Instruments, Inc., Andover, MA.
20.
A graphical instrument control environment developed by National Instruments, Inc., Austin, TX.
21.
J.
Ghijsen
,
L. H.
Tjeng
,
J.
van Elp
,
H.
Eskes
,
J.
Westerink
,
G. A.
Sawatzky
, and
M. T.
Czyzyk
,
Phys. Rev. B
38
,
11322
(
1998
).
22.
See J. Electron Spectrosc. Relat. Phenom.
75
,
11
(
1995
) for a discussion of the splitting of the O 1s level of O2.
23.
S.
Myneni
et al.,
J. Phys.: Condens. Matter
14
,
L213
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.