The general characteristics and system level concepts for space-based magnetometers are presented to illustrate the instruments, principles, and tools involved in making accurate magnetic field measurements in space. Special consideration is given to the most important practical problems that need to be solved to ensure the accuracy of the measurements and their overall impact on system design and mission costs. Several types of instruments used to measure magnetic fields aboard spacecraft and their capabilities and limitations are described according to whether they measure scalar or vector fields. The very large dynamic range associated with magnetic fields of natural origin generally dictates the use of optimized designs for each particular space mission although some wide-range, multimission magnetometers have been developed and used. Earth-field magnetic mapping missions are the most demanding in terms of absolute accuracy and resolution, approaching <1 part in 100 000 in magnitude and a few arcsec in direction. The difficulties of performing sensitive measurements aboard spacecraft, which may not be magnetically clean, represent a fundamental problem which must be addressed immediately at the planning stages of any space mission that includes these measurements. The use of long, deployable booms to separate the sensors from the sources of magnetic contamination, and their impact on system design are discussed. The dual magnetometer technique, which allows the separation of fields of external and spacecraft origin, represents an important space magnetometry tool which can result in significant savings in complex contemporary spacecraft built with minimum magnetic constraints. Techniques for in-flight estimation of magnetometer biases and sensor alignment are discussed briefly, and highlight some basic considerations within the scope and complexity of magnetic field data processing and reduction. The emerging field of space weather is also discussed, including the essential role that space-based magnetic field measurements play in this complex science, which is just in its infancy. Finally, some considerations for the future of space-based magnetometers are presented. Miniature, mass produced sensors based on magnetoresistance effects and micromachined structures have made significant advances in sensitivity but have yet to reach the performance level required for accurate space measurements. The miniaturization of spacecraft and instruments to reduce launch costs usually results in significantly increased magnetic contamination problems and degraded instrument performance parameters, a challenge that has yet to be solved satisfactorily for “world-class” science missions. The rapidly disappearing manufacturing capabilities for high-grade, low noise, soft magnetic materials of the Permalloy family is a cause of concern for the development of high performance fluxgate magnetometers for future space missions.

1.
Sh. Sh.
Dolginov
and
N. V.
Pushkov
,
Dokl. Akad. Nauk USSR
129
,
77
(
1959
).
2.
Sh. Sh.
Dolginov
,
L. N.
Zhuzgov
, and
N. V.
Pushkov
,
Artificial Earth Satellites
2
,
63
(
1959
).
3.
Sh. Sh.
Dolginov
,
L. N.
Zhuzgov
, and
V. A.
Selyutin
,
Iskusstvennyye Sputniki Zemli
4
,
135
(
1960
).
4.
C. P.
Sonnet
,
J. Geophys. Res.
68
,
1229
(
1963
).
5.
J. P.
Heppner
et al.,
Space Res.
1
,
982
(
1960
).
6.
L. J. Cahill, Space Physics (1964), pp. 301–349.
7.
N. F.
Ness
,
J. Geophys. Res.
70
,
2989
(
1965
).
8.
N. F.
Ness
,
Space Sci. Rev.
11
,
459
(
1970
).
9.
N. F.
Ness
et al.,
Science
233
,
85
(
1986
).
10.
N. F.
Ness
et al.,
Science
246
,
1473
(
1989
).
11.
J. E. P.
Connerney
,
M. H.
Acuña
, and
N. F.
Ness
,
J. Geophys. Res., [Solid Earth Planets]
92
,
15234
(
1987
).
12.
J. E. P.
Connerney
,
M. H.
Acuña
, and
N. F.
Ness
,
J. Geophys. Res., [Solid Earth Planets]
96
,
19023
(
1991
).
13.
C. T.
Russell
,
R. C.
Elphic
, and
J. A.
Slavin
,
J. Geophys. Res.
85
,
8319
(
1980
).
14.
N. F.
Ness
,
Annu. Rev. Earth Planet Sci.
7
,
249
(
1979
).
15.
S. C.
Solomon
,
New Sci.
165
,
2223
(
2000
).
16.
D.
MacKenzie
,
New Sci.
168
,
2261
(
2000
).
17.
Sh. Sh.
Dolginov
,
L. N.
Zhuzgov
, and
S. I.
Shkolnikova
,
Kosm. Issled.
22
,
792
(
1984
).
18.
J. G.
Luhmann
,
Rev. Geophys.
29
,
965
(
1991
).
19.
W.
Riedler
et al.,
Nature (London)
341
,
604
(
1989
).
20.
M. H.
Acuña
et al.,
Science
279
,
1676
(
1998
).
21.
M. H.
Acuña
et al.,
Science
284
,
790
(
1999
).
22.
J. E. P.
Connerney
et al.,
Science
284
,
794
(
1999
).
23.
A. B.
Binder
,
Science
281
,
1475
(
1998
).
24.
G. S.
Hubbard
et al.,
Acta Astronaut.
41
,
585
(
1997
).
25.
G. S.
Hubbard
,
A. B.
Binder
, and
W.
Feldman
,
IEEE Trans. Nucl. Sci.
45
,
880
(
1998
).
26.
R. P.
Lin
et al.,
EOS Trans. Am. Geophys. Union
55
,
1181
(
1974
).
27.
R. P.
Lin
et al.,
Science
281
,
1480
(
1998
).
28.
J. E.
McCoy
et al.,
EOS Trans. Am. Geophys. Union
56
,
1012
(
1975
).
29.
K. A.
Anderson
et al.,
EOS Trans. Am. Geophys. Union
56
,
1012
(
1975
).
30.
L. L.
Hood
et al.,
Phys. Earth Planet. Inter.
20
,
291
(
1979
).
31.
L. L.
Hood
et al.,
Geophys. Res. Lett.
26
,
2327
(
1999
).
32.
M. H.
Acuña
et al.,
J. Geophys. Res., [Planets]
97
,
7799
(
1992
).
33.
M. H.
Acuña
et al.,
J. Geophys. Res., [Planets]
102
,
23751
(
1997
).
34.
A.
Balogh
et al.,
Astron. Astrophys., Suppl. Ser.
92
,
221
(
1992
).
35.
M. G.
Kivelson
et al.,
Space Sci. Rev.
60
,
357
(
1992
).
36.
M. G.
Kivelson
et al.,
Science
261
,
331
(
1993
).
37.
F. M.
Neubauer
et al.,
J. Phys. E
20
,
714
(
1987
).
38.
I.
Richter
et al.,
Geophys. Res. Lett.
28
,
1913
(
2001
).
39.
C. T.
Russell
et al.,
IEEE Trans. Geosci. Remote Sens.
18
,
32
(
1980
).
40.
E. J.
Smith
,
Adv. Space Res.
13
,
5
(
1993
).
41.
J. E.
Smith
and
C. P.
Sonnett
,
IEEE Trans. Geosci. Electron.
GE-14
,
154
(
1976
).
42.
M. H.
Acuña
et al.,
Icarus
155
,
220
(
2002
).
43.
B. J.
Anderson
et al.,
IEEE Trans. Geosci. Remote Sens.
39
,
907
(
2001
).
44.
D. A.
Lohr
et al.,
Johns Hopkins APL Tech. Dig.
19
,
136
(
1998
).
45.
R. P.
Lepping
et al.,
Space Sci. Rev.
71
,
207
(
1995
).
46.
C. W.
Smith
et al.,
Space Sci. Rev.
86
,
613
(
1998
).
47.
R. C. Snare, in Measurement Techniques in Space Plasmas, edited by R. Pfaff, Geophysical Monograph No. 103 (American Geophysical Union, 1998), pp. 101–115.
48.
J. S. Eterno, in Space Mission Analysis and Design, 3rd ed., edited by J. R. Wertz and W. L. Larson (Kluwer Academic–Microcosm Press, 1999).
49.
P. Ripka, Magnetic Sensors and Magnetometers (Artech House, Dedham, MA, 2001).
50.
M. Shuster, in Fundamentals of Space Systems, edited by V. L. Pisacane and R. Moore (Oxford University Press, Oxford, 1994).
51.
M. H.
Acuña
et al.,
Space Sci. Rev.
71
,
5
(
1995
).
52.
W. H.
Mish
et al.,
Space Sci. Rev.
71
,
815
(
1995
).
53.
D. N.
Baker
,
Solar-Terrestrial Relations: Predicting The Effects On The Near-Earth Environment
22
,
7
(
1998
).
54.
N. C.
Maynard
,
Rev. Geophys.
33
,
547
(
1995
).
55.
M. A.
Shea
and
D. F.
Smart
,
Solar-Terrestrial Relations: Predicting The Effects on The Near-Earth Environment
22
,
29
(
1998
).
56.
D. F.
Webb
,
IEEE Trans. Plasma Sci.
28
,
1795
(
2000
).
57.
R.
Pirjola
et al.,
Phys. Chem. Earth
25
,
333
(
2000
).
58.
D. N.
Baker
,
IEEE Trans. Plasma Sci.
28
,
2007
(
2000
).
59.
D. N.
Baker
and
J. G.
Kappenman
,
Science
273
,
168
(
1996
).
60.
J. G.
Kappenman
and
V. D.
Albertson
,
IEEE Spectrum
27
,
27
(
1990
).
61.
V. D.
Albertson
et al.,
IEEE Trans. Power Deliv.
8
,
1206
(
1993
).
62.
A.
Balogh
et al.,
Space Sci. Rev.
79
,
65
(
1997
).
63.
S.
Kokubun
et al.,
J. Geomagn. Geoelectr.
46
,
7
(
1994
).
64.
M. W.
Dunlop
et al.,
Planet. Space Sci.
47
,
1389
(
1999
).
65.
D.
Duret
et al.,
IEEE Trans. Magn.
31
,
3197
(
1995
).
66.
D.
Duret
et al.,
IEEE Trans. Magn.
32
,
4935
(
1996
).
67.
H.
Aschenbrenner
and
G.
Goubau
,
Hochfreq Tech. Electroakust
47
,
178
(
1936
).
68.
J. Nickel, Report No. HPL-95-60, 1995.
69.
F.
Primdahl
,
J. Phys. E
12
,
241
(
1979
).
70.
N.
Kernevez
and
H.
Glenat
,
IEEE Trans. Magn.
27
,
5402
(
1991
).
71.
R. E.
Slocum
and
F. N.
Reilly
,
IEEE Trans. Nucl. Sci.
NS-10
,
165
(
1963
).
72.
R. E.
Slocum
,
P. C.
Cabiness
, and
S. L.
Blevins
,
J. Phys. E
42
,
763
(
1971
).
73.
R. E.
Slocum
,
Phys. Rev. Lett.
29
,
1642
(
1972
).
74.
W. H.
Farthing
and
W. C.
Folz
,
Rev. Sci. Instrum.
38
,
1023
(
1967
).
75.
A. M. A.
Frandsen
et al.,
IEEE Trans. Geosci. Remote Sens.
16
,
195
(
1978
).
76.
M. H.
Acuña
,
IEEE Trans. Magn.
MAG-10
,
519
(
1974
).
77.
M. H. Acuña et al., NASA Rep. No. TM-79656, 1978.
78.
H.
Luhr
et al.,
IEEE Trans. Geosci. Remote Sens.
23
,
259
(
1985
).
79.
O. V.
Nielsen
et al.,
Meas. Sci. Technol.
6
,
1099
(
1995
).
80.
W.
Magnes
et al.,
Meas. Sci. Technol.
9
,
1219
(
1998
).
81.
J. M. G.
Merayo
et al.,
Meas. Sci. Technol.
11
,
120
(
2000
).
82.
R. L.
McPherron
and
R. C.
Snare
,
IEEE Trans. Geosci. Remote Sens.
16
,
134
(
1978
).
83.
K. W.
Behannon
et al.,
Space Sci. Rev.
21
,
235
(
1977
).
84.
O. V.
Nielsen
et al.,
Sens. Actuators A
59
,
168
(
1997
).
85.
F.
Primdahl
and
P.
Jensen
,
J. Phys. E
15
,
221
(
1982
).
86.
C. P. Escoubet, C. T. Russell, and R. Schmidt, Space Sci. Rev. 79 (1997).
87.
W. A. Geyger, Non-Linear Magnetic Control Devices (McGraw-Hill, New York, 1964).
88.
R. L.
Mcpherron
,
P. J.
Coleman
, and
R. C.
Snare
,
IEEE Trans. Aerosp. Electron. Syst.
11
,
1110
(
1975
).
89.
T. A.
Potemra
,
L. J.
Zanetti
, and
M. H.
Acuña
,
IEEE Trans. Geosci. Remote Sens.
23
,
246
(
1985
).
90.
C. T.
Russell
,
IEEE Trans. Geosci. Electron.
E-16
,
239
(
1978
).
91.
C. T.
Russell
et al.,
Space Sci. Rev.
71
,
563
(
1995
).
92.
R. C.
Snare
and
J. D.
Means
,
IEEE Trans. Magn.
13
,
1107
(
1977
).
93.
D. J.
Southwood
,
W. A. C.
Mierjedrzejowicz
, and
C. T.
Russell
,
IEEE Trans. Geosci. Remote Sens.
23
,
301
(
1985
).
94.
L.
Zanetti
et al.,
Space Sci. Rev.
70
,
465
(
1994
).
95.
F.
Primdahl
et al.,
J. Phys. E
22
,
1004
(
1989
).
96.
F.
Primdahl
et al.,
Meas. Sci. Technol.
2
,
1039
(
1991
).
97.
E. B.
Pedersen
et al.,
Meas. Sci. Technol.
10
,
N124
(
1999
).
98.
J.
Piilhenriksen
et al.,
Meas. Sci. Technol.
7
,
897
(
1996
).
99.
F.
Primdahl
et al.,
Meas. Sci. Technol.
5
,
359
(
1994
).
100.
P.
Ripka
and
F.
Primdahl
,
Sens. Actuators A
82
,
161
(
2000
).
101.
P.
Ripka
et al.,
Sens. Actuators A
46
,
307
(
1995
).
102.
F.
Primdahl
and
P. A.
Jensen
,
J. Phys. E
20
,
637
(
1987
).
103.
N. F.
Ness
et al.,
J. Geophys. Res.
76
,
3564
(
1971
).
104.
R. P.
Lepping
,
K. W.
Behannon
, and
N. F.
Ness
,
EOS Trans. Am. Geophys. Union
55
,
410
(
1974
).
105.
C. F.
Hall
,
Science
188
,
445
(
1975
).
106.
M. H.
Acuña
,
Radio Electron. Eng.
52
,
431
(
1982
).
107.
W. M.
Farrell
et al.,
IEEE Trans. Magn.
31
,
966
(
1995
).
108.
C. T.
Russell
,
Cosm. Electrodyn.
2
,
184
(
1971
).
109.
B. B.
Narod
et al.,
Can. J. Phys.
63
,
1468
(
1985
).
110.
B. B.
Narod
and
J. R.
Bennest
,
Phys. Earth Planet. Inter.
59
,
23
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.