We describe a novel experimental method using the diffraction of a He–Ne laser beam to study surfaces patterned with structures on mesoscopic to macroscopic length scales. The technique provides high spatial and temporal resolution; it is not limited to periodic, artificial structures, but is also well suited to study the development of self-organized surface relief. Measurements can be performed under in situ conditions in a diffraction mode or an imaging mode, providing (1) qualitative and quantitative information on the surface structures, (2) information on time-dependent surface changes with a resolution of 10 μs or better, (3) observation of incubation processes (including determination of incubation time) in first-order, displacive phase transformations, and (4) observation of the surface in real space, in particular, the pattern evolution as a function of temperature or other parameters. As an example we show results of the application of our method to a Ni0.63Al0.37 single crystal undergoing a martensitic transformation.

1.
Scanning Tunneling Microscopy II, edited by R. Wiesendanger and H.-J. Güntherodt (Springer, Berlin, 1995).
2.
J.
Als-Nielsen
,
D.
Jacquemain
,
K.
Kjaer
,
F.
Leveiller
,
M.
Lahav
, and
L.
Leiserowitz
,
Phys. Rep.
246
,
251
(
1994
).
3.
J. A.
Aas
,
Appl. Opt.
11
,
1579
(
1972
).
4.
J. D. Gaskill, Linear Systems, Fourier Transforms and Optics (Wiley, New York, 1978), p. 420.
5.
C.
Allain
and
M.
Cloitre
,
Phys. Rev. B
33
,
3566
(
1986
).
6.
S. K.
Sinha
,
Physica D
38
,
310
(
1989
).
7.
We used the program ImageTool by the University of Texas Health Science Center at San Antonio (UTHSCSA) which can be downloaded at no charge from http://ddsdx.uthscsa.edu.
8.
S.
Chakravorty
and
C. M.
Wayman
,
Metall. Trans. A
7A
,
555
(
1976
).
9.
U.
Klemradt
,
M.
Fromm
,
G.
Landmesser
,
H.
Amschler
, and
J.
Peisl
,
Physica B
248
,
83
(
1998
).
10.
T.
Davenport
,
C.
Grehofsky
,
M.
Gonzalez
,
J.
Worgull
, and
J.
Trivisonno
,
J. Phys. Colloq.
5
,
C8
-
1023
(
1995
).
11.
T.
Davenport
,
L.
Zhou
, and
J.
Trivisonno
,
Phys. Rev. B
59
,
3421
(
1999
).
12.
G.
Lormand
,
M.
Robin
, and
P.-F.
Gobin
,
Metallography
13
,
369
(
1980
).
13.
S.
Hamma
and
P.
Roca i Cabarrocas
,
J. Appl. Phys.
81
,
7282
(
1997
).
14.
Y. T.
Zhu
,
T. C.
Lowe
, and
R. J.
Asaro
,
J. Appl. Phys.
82
,
1129
(
1997
).
15.
V. A.
Shneidman
,
K. A.
Jackson
, and
K. M.
Beatty
,
Phys. Rev. B
59
,
3579
(
1999
).
16.
T.
Kakeshita
,
K.
Kuroiwa
,
K.
Shimizu
,
T.
Ikeda
,
A.
Yamagishi
, and
M.
Date
,
Mater. Trans., JIM
34
,
423
(
1993
).
17.
H.
Abe
,
M.
Ishibashi
,
K.
Oshima
,
T.
Suzuki
,
M.
Wuttig
, and
K.
Kakurai
,
Phys. Rev. B
50
,
9020
(
1994
).
18.
M.
Aspelmeyer
,
U.
Klemradt
,
L. T.
Wood
,
S. C.
Moss
, and
J.
Peisl
,
Phys. Status Solidi A
174
,
R9
(
1999
).
19.
M.
Aspelmeyer
,
U.
Klemradt
,
H.
Abe
,
S. C.
Moss
, and
J.
Peisl
,
Mater. Sci. Eng., A
273-275
,
286
(
1999
).
20.
The longitudinal magnification is defined by ML≔dxi/dxo=−MT2, where xi is a distance on the image side and xo the corresponding distance on the object side. The result can be verified by differentiating the Gauss lens formula.
This content is only available via PDF.
You do not currently have access to this content.