The luminescence lifetime distribution can be used to determine the distribution of quencher concentrations in a heterogeneous sample. We describe a frequency domain instrument for real-time measurements of phosphorescence lifetime distributions in microheterogeneous objects. In this system (1) an array of harmonics (typically 100–200 frequencies) is used to modulate the excitation source, a light emitting diode. Due to the relatively long triplet state lifetimes, the frequencies required for the modulation are typically below 40 000 kHz, which allows direct digitization of both excitation and emission signals. (2) The dependence of the phase/amplitude factor on the modulation frequency is determined by linear least-squares analysis of the emission signal, which is sampled and summed over the multiple excitation cycles. (3) The phase/amplitude relationship obtained is analyzed in real time using a “light” version of the maximum entropy algorithm, which provides a complete phosphorescence lifetime distribution. (4) The lifetime distribution is converted into the distribution of quencher concentrations using an appropriate model of quenching. The instrument is also capable of measuring phosphorescence in “single-frequency” mode, which is useful for rapid evaluation of apparent luminescence lifetimes. In this mode, a correction for an in-phase signal, which is due to backscattering and fluorescence, is applied to improve the accuracy of lifetime measurements. The instruments were tested in Stern–Volmer calibrations of Pd-porphyrin based phosphors for oxygen measurements and used for preliminary evaluation of oxygen distributions in rat tumor tissues. The instruments were found to be capable of accurate determination of lifetimes in the range of 10–3000 μs. The average duration of a single lifetime distribution measurement was about 15 s, depending on the sample and on the density of the lifetime grid in the maximum entropy method analysis. In the single-frequency mode, the measurement time was reduced to about 0.2–0.5 s. The instruments provide complete correction for the in-phase signal of up to 40% of the total emission intensity.

1.
Here and throughout the text, we use the term luminescence to identify any delayed light emission, i.e., phosphorescence, fluorescence, etc.
2.
Photochemistry in Organized and Constrained Media, edited by V. Ramamurthy (VCH, New York, 1991).
3.
See, for example,
L. B.
McGown
,
S. L.
Hemmingsen
,
J. M.
Shaver
, and
L.
Geng
,
Appl. Spectrosc.
49
,
60
(
1995
);
A.
Vix
and
H.
Lami
,
Biophys. J.
68
,
1145
(
1995
);
I. M. P.
del Pino
,
A.
Parody Morreale
, and
J. M.
Sanchez Ruiz
,
Anal. Biochem.
244
,
239
(
1997
);
J. W.
Hofstraat
,
H. J.
Verhey
,
J. W.
Verhoeven
,
M. U.
Kumke
,
G.
Li
,
S. L.
Hemmingsen
, and
L. B.
McGown
,
Polymer
38
,
2899
(
1997
);
D. S.
Dijkstra
,
J.
Broos
,
A.
Visser
,
A.
van Hoek
, and
G. T.
Robillard
,
Biochemistry
36
,
4860
(
1997
);
S. J.
Kores
,
G. W.
Canters
,
G.
Gilardi
,
A.
van Hoek
, and
A.
Visser
,
Biophys. J.
75
,
2441
(
1998
);
G. B.
Strambini
and
P.
Cioni
,
J. Am. Chem. Soc.
121
,
8337
(
1999
);
U. A.
van der Heide
,
S. C.
Hopkins
, and
Y. E.
Goldman
,
Biophys. J.
78
,
2138
(
2000
).
4.
W. R. Ware, in Ref. 2, Chap. 13, p. 563.
5.
J. C. Brochon, in Numerical Computer Methods, edited by M. L. Johnson (Academic, San Diego, 1994), Vol. 240, p. 262.
6.
See, for example, instruments and software from PTI Technologies (www.pti-nj.com).
7.
J. N.
Demas
,
B. A.
DeGraff
, and
P. B.
Coleman
,
Anal. Chem.
71
,
793A
(
1999
).
8.
See, for example,
R. D.
Shonat
,
D. F.
Wilson
,
C. E.
Riva
, and
M.
Pawlowski
,
Appl. Opt.
33
,
3711
(
1992
);
S. A.
Vinogradov
,
L.-W.
Lo
,
W. T.
Jenkins
,
S. M.
Evans
,
C.
Koch
, and
D. F.
Wilson
,
Biophys. J.
70
,
1609
(
1996
);
A. G.
Tsai
,
B.
Friesenecker
,
M. C.
Mazzoni
,
H.
Kerger
,
D. G.
Buerk
,
P. C.
Johnson
, and
M.
Intaglietta
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
6590
(
1998
);
M. C.
Hogan
,
J. Appl. Physiol.
86
,
720
(
1999
);
M.
Sinaasappel
,
C.
Donkersloot
,
J.
van Bommel
, and
C.
Ince
,
Am. J. Physiol.
39
,
G1515
(
1999
).
9.
S. A.
Vinogradov
and
D. F.
Wilson
,
Adv. Exp. Med. Biol.
428
,
657
(
1997
);
S. A.
Vinogradov
,
L. W.
Lo
, and
D. F.
Wilson
,
Chem. Eur. J.
5
,
1338
(
1999
).
10.
See, for example, Ref. 7 for review; for more recent works see:
Y.
Rharbi
,
A.
Yekta
, and
M. A.
Winnik
,
Anal. Chem.
71
,
5045
(
1999
);
Y.
Amao
and
I.
Okura
,
Analyst
125
,
1601
(
2000
);
G.
DiMarco
and
M.
Lanza
,
Sens. Actuators B
63
,
42
(
2000
);
A. M.
Morin
,
W. Y.
Xu
,
J. N.
Demas
, and
B. A.
DeGraff
,
J. Fluoresc.
10
,
7
(
2000
).
11.
E. R.
Carraway
,
J. N.
Demas
, and
B. A.
DeGraff
,
Anal. Chem.
63
,
332
(
1991
).
12.
W. Y.
Xu
,
R.
Schmidt
,
M.
Whaley
,
J. N.
Demas
,
B. A.
Degraff
,
E. K.
Karikari
, and
B. L.
Farmer
,
Anal. Chem.
67
,
3172
(
1995
).
13.
Preliminary communication, ISOTT 2000 Proceedings, Nijmegen, The Netherlands, S. A. Vinogradov, M. A. Fernandez-Seara, B. Dugan, D. Biruski, D. F. Wilson, Comp. Biochem. Physiol. B (in press).
14.
J. R.
Alcala
,
C.
Yu
, and
G. J.
Yeh
,
Rev. Sci. Instrum.
64
,
1554
(
1993
).
15.
S. A.
Vinogradov
and
D. F.
Wilson
,
Appl. Spectrosc.
54
,
849
(
2000
).
16.
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Plenum, New York, 1999).
17.
In the most general form I(t) should also include the response function of the detector, however, here for simplicity we assume an ideal detector with truly “instantaneous” δ response.
18.
R. D.
Spencer
and
G.
Weber
,
Ann. N.Y. Acad. Sci.
158
,
361
(
1969
).
19.
M. B.
Smalley
,
J. M.
Shaver
, and
L. B.
McGown
,
Anal. Chem.
65
,
3466
(
1993
).
20.
M.
Hauser
and
G.
Heidt
,
Rev. Sci. Instrum.
46
,
470
(
1975
).
21.
E.
Gratton
and
M.
Linkeman
,
Biophys. J.
44
,
315
(
1983
).
22.
A. K.
Livesey
and
J. C.
Brochon
,
Biophys. J.
52
,
693
(
1987
).
23.
J. G.
McWhirter
and
E. R.
Pike
,
J. Phys.
11
,
1729
(
1978
).
24.
A. N. Tikhonov, Solutions of Ill-Posed Problems (Wiley, London, 1977).
25.
H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 1996).
26.
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
213
(
1982
);
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
229
(
1982
).
27.
G.
Landl
,
T.
Langthaler
,
H. W.
Engl
, and
H.
Kauffmann
,
J. Comput. Phys.
95
,
1
(
1991
).
28.
MEM was analyzed as a regularization technique, for example, in
H. W.
Engl
and
G.
Landl
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
30
,
1509
(
1993
).
29.
J. Skilling, in Maximum Entropy and Bayesian Methods, edited by J. Skilling (Kluwer, Dordrecht, 1989), p. 45.
30.
J. M.
Shaver
and
L. B.
McGown
,
Anal. Chem.
68
,
9
(
1996
);
J. M.
Shaver
and
L. B.
McGown
,
Anal. Chem.
68
,
611
(
1996
).
31.
Usually τk is chosen to be spaced logarithmically (after Ref. 22).
32.
E. T. Janes, Papers on Probability, Statistics and Statistical Physics (Reidel, Dordrecht, 1983).
33.
J.
Skilling
and
R. K.
Bryan
,
Mon. Not. R. Astron. Soc.
211
,
111
(
1984
).
34.
T. J.
Cornwell
and
K. F.
Evans
,
Astron. Astrophys.
143
,
77
(
1985
).
35.
S. A.
Vinogradov
and
D. F.
Wilson
,
Biophys. J.
67
,
2048
(
1994
).
36.
R. I.
Shrager
,
Commun. ACM
15
,
41
(
1972
).
37.
In general, the uniqueness of the inverse, related to the completeness of the transform kernel, has to be proven for each particular system {Ω(τ,Q)}.
38.
D.
Eastwood
and
M.
Gouterman
,
J. Mol. Spectrosc.
35
,
359
(
1970
).
39.
S. A.
Vinogradov
and
D. F.
Wilson
, J. Chem. Soc., Perkin Trans. 2, 103 (1994).
40.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannerly, Numerical Recipes in C. The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992).
41.
S. A.
Vinogradov
and
D. F.
Wilson
,
Chem. Eur. J.
6
,
2456
(
2000
).
42.
C. J. Koch, Canadian Patent (No. 1,304,449 filed 30 June 1992).
43.
Oxyphor G2 was obtained from Oxygen Enterprises, Ltd.; oxyphor G2 is PdTBPglu2OH, a water soluble polyglutamic dendrimer-tetrabenzoporphyrin [
S. A.
Vinogradov
and
D. F.
Wilson
,
Abstr. Pap. - Am. Chem. Soc.
217
,
U1122
(
1999
)].
This content is only available via PDF.
You do not currently have access to this content.