We present an automated setup to measure the surface plasmon resonance (SPR)-enhanced optical absorption spectra of molecular adsorbates. The setup detects the reflectivity at the SPR resonance angle as a function of the incident light wavelength. Because the resonance angle is wavelength dependent, a feedback mechanism adjusts the photodetector position to follow the resonance angle when the wavelength varies. Both theoretical calculations and experimental measurements show a signal enhancement of up to ∼40 times over the conventional absorption spectroscopy. The SPR-based absorption spectroscopy is surface specific because the optical field is localized near the surface at resonance. In addition, the SPR angular shift is simultaneously measured, which provides adsorbate coverage and adsorption kinetic information. We anticipate that with our automated system, the method could be used in the study of adsorbed molecules and in chemical and biosensor applications.

1.
E. A. H. Hall, Biosensors, North American ed. (Englewood Cliffs, N.J., 1991).
2.
S.
Wang
,
J.
Ramirez
,
P. G.
Wang
, and
R. M.
Leblanc
,
Langmuir
15
,
5623
(
1999
).
3.
Q.
Huo
,
S.
Wang
,
A.
Pisseloup
,
D.
Verma
, and
R. M.
Leblanc
,
Chem. Commun. (Cambridge)
1999
,
1601
(
1999
).
4.
W. Plieth, W. Kozlowski, and T. Twomey, in Adsorption of Molecules at Metal Electrodes, edited by J. Lipkowski and P. N. Ross (VCH, New York, 1992).
5.
W. Hansen, in Advances in Electrochemistry and Electrochemical Engineering, edited by R. H. Müller (Wiley, New York, 1973), Vol. 9, p. 1.
6.
J. D. E. McIntyre, in Optical Properties of Solids–New Developments, edited by B. O. Seraphin (North-Holland, Amsterdam, 1976).
7.
T.
Satoshi
,
S.
Igarashi
,
H.
Sato
, and
K.
Niki
,
Langmuir
7
,
1005
(
1991
), and the references therein.
8.
E.
Ngameni
,
A.
Laouéna
, and
M.
L’Her
,
J. Electroanal. Chem.
301
,
207
(
1991
).
9.
T.
Sagara
and
K.
Niki
,
Langmuir
9
,
831
(
1993
).
10.
T.
Sagara
,
S.
Takagi
, and
K.
Niki
,
J. Electroanal. Chem.
349
,
159
(
1993
).
11.
T.
Sagara
,
H. X.
Wang
, and
K.
Niki
,
J. Electroanal. Chem.
364
,
285
(
1994
).
12.
I.
Pockrand
,
J. D.
Swalen
,
R.
Santo
,
A.
Brillante
, and
M. R.
Philpott
,
J. Chem. Phys.
69
,
4001
(
1978
).
13.
S.
Boussaad
,
J.
Pean
, and
N. J.
Tao
,
Anal. Chem.
72
,
222
(
2000
).
14.
S.
Wang
,
S.
Boussaad
,
S.
Wong
, and
N. J.
Tao
,
Anal. Chem.
72
,
4003
(
2000
).
15.
H.
Kano
and
S.
Kawata
,
Appl. Opt.
33
,
5166
(
1994
).
16.
A. A.
Kolomenskii
,
P. D.
Gershon
, and
H. A.
Schuessler
,
Appl. Opt.
39
,
3314
(
2000
).
17.
N. J.
Tao
,
S.
Boussaad
,
W. L.
Huang
,
R. A.
Arechabaleta
, and
J.
D’Agnese
,
Rev. Sci. Instrum.
70
,
4656
(
1999
).
18.
R. J.
Fisher
and
M.
Fivash
,
Current Biotechnology
45
,
65
(
1994
).
19.
A. G.
Frutos
and
R. M.
Corn
,
Anal. Chem.
70
,
449A
(
1998
).
20.
J.
Homola
,
S. S.
Yee
, and
G.
Gauglitz
,
Sens. Actuators B
54
,
3
(
1999
).
21.
C.
Nylander
,
B.
Liedberg
, and
T.
Lind
,
Sens. Actuators
3
,
79
(
1982
).
22.
M.
Nrksich
,
G. B.
Sigal
, and
G. M.
Whitesides
,
Langmuir
11
,
4383
(
1995
).
23.
H.
Sota
,
Y.
Hasegawa
, and
M.
Iwakura
,
Anal. Chem.
70
,
2019
(
1998
).
24.
Z.
Salamon
,
Y.
Wang
, and
G.
Tollin
,
Biophys. J.
71
,
283
(
1996
).
25.
L.
Haussling
,
H.
Ringsdorf
,
F.-J.
Schmitt
, and
W.
Knoll
,
Langmuir
7
,
1837
(
1991
).
26.
A.
Otto
,
Z. Phys.
216
,
398
(
1968
).
27.
E.
Krretschmann
,
Z. Phys.
241
,
313
(
1971
).
28.
K. A.
Peterlinz
and
R.
Georgiadis
,
Opt. Commun.
130
,
260
(
1996
).
29.
L. S.
Jung
,
C. T.
Campbell
,
T. M.
Chinowsky
,
M. N.
Mar
, and
S. S.
Yee
,
Langmuir
14
,
5636
(
1998
).
30.
I.
Taniguchi
,
M.
Iseki
,
K.
Toyosawa
,
H.
Yamaguchi
, and
K.
Yasukouchi
,
J. Electroanal. Chem.
164
,
385
(
1984
).
31.
T.
Libermann
and
W.
Knoll
,
Colloids Surf., A
171
,
115
(
2000
).
32.
T.
Liebermann
,
W.
Knoll
,
P.
Sluka
, and
R.
Herman
,
Colloids Surf., A
169
,
337
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.