Characterizing and calibrating a low impedance large Helmholtz coil generating 60 Hz magnetic fields with amplitudes well below the earth’s magnetic field is difficult and imprecise when coil shielding is not available and noise is an issue. Parameters influencing the calibration process such as temperature and coil impedance need to be figured in the calibration process. A simple and reliable calibration technique is developed and used to measure low amplitude fields over a spatial grid using a standard Hall effect probe gaussmeter. These low amplitude fields are typically hard or impossible to detect in the presence of background fields when using the gaussmeter in the conventional manner. Standard deviations of two milligauss and less have been achieved over a spatial grid in a uniform field region. Theoretical and measured fields are compared yielding reasonable agreement for a large coil system designed and built for bioelectromagnetic experiments at the University of Nevada at Las Vegas using simple tools. Theoretical results need to be compared with and adjusted in accord with measurements taken over a large parameter space within the design constraints of the coil. Magnetic field measurements made over a four year period are shown to be consistent. Characterizing and calibrating large Helmholtz coils can be performed with rulers, levels, plumb lines, and inexpensive gaussmeters.

1.
A. H.
Firester
,
Rev. Sci. Instrum.
37
,
1264
(
1966
).
2.
W. M.
Frix
,
G. G.
Karady
, and
B. A.
Venetz
,
IEEE Trans. Power Deliv.
9
,
100
(
1994
).
3.
M. E.
Rudd
and
J. R.
Craig
,
Rev. Sci. Instrum.
39
,
1372
(
1968
).
4.
E. W.
Purcell
,
Am. J. Phys.
57
,
18
(
1989
).
5.
F. R.
Crownfield
, Jr.
,
Rev. Sci. Instrum.
35
,
240
(
1964
).
6.
C. C.
Davis
,
I.
Barber
, and
M. L.
Swicord
,
Bioelectromagnetics (N.Y.)
20
,
203
(
1999
).
7.
P.
Doynov
,
H. E.
Cohen
,
M. R.
Cook
, and
C.
Graham
,
Bioelectromagnetics (N.Y.)
20
,
101
(
1999
).
8.
T.
Shigemitsu
,
K.
Takeshita
,
Y.
Shiga
, and
M.
Kato
,
Bioelectromagnetics (N.Y.)
14
,
107
(
1993
).
9.
R. C.
Calhoun
,
Am. J. Phys.
64
,
1399
(
1996
).
10.
J.
Nissen
and
L.-E.
Paulsson
,
IEEE Trans. Instrum. Meas.
45
,
304
(
1996
).
11.
E. L. Bronaugh, IEEE 1995 International Symposium on Electromagnetic Compatibility, Atlanta, Georgia, 14–18 Aug. 1995, p. 72.
12.
S. R.
Trout
,
IEEE Trans. Magn.
24
,
2108
(
1988
).
13.
P.
Murgatroyd
,
IEEE Trans. Magn.
25
,
2788
(
1989
).
14.
F. R.
Crownfield
, Jr.
,
Rev. Sci. Instrum.
35
,
240
(
1964
).
15.
M. E.
Rudd
and
J. R.
Craig
,
Rev. Sci. Instrum.
39
,
1372
(
1968
).
16.
E. W.
Purcell
,
Am. J. Phys.
57
,
18
(
1989
).
17.
P. A.
Colavita
and
V. A.
Bustos
,
Rev. Sci. Instrum.
49
,
1006
(
1978
).
18.
L. W.
McKeehan
,
Rev. Sci. Instrum.
10
,
371
(
1939
).
19.
K.
Kaminishi
and
S.
Nawata
,
Rev. Sci. Instrum.
52
,
447
(
1981
).
20.
M. W.
Garrett
,
J. Appl. Phys.
22
,
1091
(
1951
).
21.
P. N.
Murgatroyd
,
Am. J. Phys.
59
,
949
(
1991
).
22.
L. B.
Luganskii
,
Sov. Phys. Tech. Phys.
31
,
537
(
1986
).
23.
R. K.
Cacak
and
J. R.
Craig
,
Rev. Sci. Instrum.
40
,
1468
(
1969
).
24.
W. R. Smythe, Static and Dynamic Electricity, 2nd ed. (McGraw-Hill, New York, 1950), pp. 270–271, 280–282.
25.
W. R. Smythe, Static and Dynamic Electricity, 3rd ed. (Hemisphere, New York, 1989), pp. 290–291, 300–302.
26.
J. Van Bladel, Electromagnetic Fields (McGraw-Hill, New York, 1964), pp. 155–156.
27.
R. A. Schill, Jr., IEEE Trans. Magn. (submitted).
28.
J. G. Bartholomew and A. E. Drake, Proceedings of BEMC ’97, 1997 International Conference on Electromagnetic Measurement, Teddington, UK, Nov. 1997 (National Physical Laboratory, Teddington, 1997), pp. 45-1–45-3.
This content is only available via PDF.
You do not currently have access to this content.