When the atomic force microscope (AFM) is used for force measurements, the driving speed typically does not exceed a few microns per second. However, it is possible to perform the AFM force experiment at much higher speed. In this article, theoretical calculations and experimental measurements are used to show that in such a dynamic regime the AFM cantilever can be significantly deflected due to viscous drag force. This suggests that in general the force balance used in a surface force apparatus does not apply to the dynamic force measurements with an AFM. We develop a number of models that can be used to estimate the deflection caused by viscous drag on a cantilever in various experimental situations. As a result, the conditions when this effect can be minimized or even suppressed are specified. This opens up a number of new possibilities to apply the standard AFM technique for studying dynamic phenomena in a thin gap.

1.
J. N.
Israelachvili
and
G. E.
Adams
,
J. Chem. Soc., Faraday Trans. 1
74
,
975
(
1978
).
2.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
3.
W. A.
Ducker
,
T. J.
Senden
, and
R. M.
Pashley
,
Nature (London)
353
,
239
(
1991
).
4.
H. J.
Butt
,
Biophys. J.
60
,
1438
(
1991
).
5.
J. H.
Hoh
and
A.
Engel
,
Langmuir
9
,
3310
(
1993
).
6.
S. J.
O’Shea
and
M. E.
Welland
,
Langmuir
14
,
4186
(
1998
).
7.
J. E.
Sader
,
J. Appl. Phys.
84
,
64
(
1998
).
8.
P.
Attard
,
J. C.
Schulz
, and
M. W.
Rutland
,
Rev. Sci. Instrum.
69
,
3852
(
1998
).
9.
M.
Preuss
and
H. J.
Butt
,
J. Colloid Interface Sci.
208
,
468
(
1998
).
10.
G. E.
Yakubov
,
H. J.
Butt
, and
O. I.
Vinogradova
,
J. Phys. Chem. B
104
,
3407
(
2000
).
11.
V. S. J.
Craig
,
A. M.
Hyde
, and
R. M.
Pashley
,
Langmuir
12
,
3557
(
1996
).
12.
D. Y. C.
Chan
and
R. G.
Horn
,
J. Chem. Phys.
83
,
5311
(
1985
).
13.
R. G.
Horn
,
O. I.
Vinogradova
,
M. E.
Mackay
, and
N.
Phan-Thien
,
J. Chem. Phys.
112
,
6424
(
2000
).
14.
O. I.
Vinogradova
,
Langmuir
14
,
2827
(
1998
).
15.
O. I.
Vinogradova
,
Int. J. Mineral Proc.
56
,
31
(
1999
).
16.
The AFM force balance should incorporate both the phenomenon we consider here and the (concentrated) force on the sphere, unless the drag on the cantilever is supressed.
17.
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1964).
18.
The assumption of a small angle is well justified for the AFM geometry where α is usually less than 5°∼0.09 rad.
19.
S. A. C.
Gould
et al.,
Ultramicroscopy
33
,
93
(
1990
).
20.
D.
Leighton
,
Bull. Am. Phys. Soc.
31
,
1713
(
1986
).
21.
O. I.
Vinogradova
and
F.
Feuillebois
,
J. Colloid Interface Sci.
221
,
1
(
2000
).
22.
A.
Roters
and
D.
Johannsmann
,
Phys.: Condens. Matter
8
,
7561
(
1996
).
23.
M.
Preuss
and
H. J.
Butt
,
Langmuir
14
,
3164
(
1998
).
24.
J. P.
Cleveland
,
S.
Manne
,
D.
Bocek
, and
P. K.
Hansma
,
Rev. Sci. Instrum.
64
,
403
(
1993
).
25.
The hydrodynamic drag on a sphere is proportional to the velocity of the relative motion, which is unknown. In case of a bare cantilever this isapproximately equal to that of the moving substrate v. This has been justified provided that Δz(L)≪H. In case of an attached sphere this simplification is no longer valid, because the real distance between the sphere and the substrate is δ=h+Δz(L). Clearly, h and Δz(L) are of the same order of magnitude and that in the general case the velocity of a sphere relative to the substrate dδ/dt≠v. Therefore, our estimate of drag on the sphere is very approximate. However, it provides us with some guidance.
26.
J. E.
Sader
,
Rev. Sci. Instrum.
66
,
4583
(
1995
).
27.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).
This content is only available via PDF.
You do not currently have access to this content.