Strong optical pumping of ions can result after a few microseconds of resonance excitation in a laser beam. However, both Fokker–Planck diffusion and acceleration due to macroscopic electric fields can remove an ion from resonance by changing the ion velocity on a similar timescale. Therefore, the time dependence of laser induced fluorescence can be influenced by particle acceleration and velocity–space diffusion. This effect which has already been used to measured Fokker–Planck diffusion, is extended to include the influence of an electric field and used to measure the electric field associated with an electrostatic shock in a multipolar gas discharge.

1.
J.
Bowles
,
R.
McWilliams
, and
N.
Rynn
,
Phys. Plasmas
1
,
3814
(
1994
).
2.
D. N.
Hill
,
S.
Fornaca
, and
M. G.
Wickham
,
Rev. Sci. Instrum.
54
,
309
(
1983
).
3.
J. J.
Curry
,
F.
Skiff
,
M.
Sarfaty
, and
T. N.
Good
,
Phys. Rev. Lett.
74
,
1767
(
1995
).
4.
D. A.
Edrich
,
R. C.
McWilliams
, and
N. S.
Wolf
,
Rev. Sci. Instrum.
67
,
2812
(
1996
).
5.
F.
Skiff
and
J. J.
Curry
,
Rev. Sci. Instrum.
66
,
629
(
1995
).
6.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
,
35
(
1943
).
7.
G.
Bachet
,
F.
Skiff
,
F.
Doveil
, and
R. A.
Stern
,
Phys. Plasmas
8
,
3535
(
2001
).
8.
H. R. Griem, in Radiative Processes Discharge Plasmas, edited by J. M. Proud and L. H. Luessen, NATO ASI Series B, Vol. 149 (Plenum, New York, 1986), p. 15.
9.
W. B.
Thompson
and
J.
Hubbard
,
Rev. Mod. Phys.
32
,
714
(
1960
).
This content is only available via PDF.
You do not currently have access to this content.