Coaxial disk devices are widely used at low Reynolds numbers to simulate cellular shear loading. Here, we develop a mathematical theory for analyzing fluid behavior in these instruments. It improves upon classical results by accounting for both unsteady dynamics and wall drag effects. All previous models are shown to be special cases of the present one. Most devices utilize a low aspect ratio, for which we find wall effects to be limited to small regions near the periphery. In these cases, classical theory yields acceptable precision over most of the domain. Investigators commonly simulate pulsatile effects using low-frequency sinusoidal forcing. Results indicate that fluid motion remains essentially harmonic, permitting the exact solution to be approximated by a simple separable expression. This approximation should be useful in analyzing specific configurations. A wavelike flow mode conjectured to exist at high Strouhal numbers is also discussed.

1.
T. D.
Brown
,
J. Biomech.
33
,
3
(
2000
).
2.
J.
Suvatne
,
A. I.
Barakat
, and
M. E.
O’Donnell
,
Am. J. Physiol.
280
,
C216
(
2001
).
3.
S.
Kudo
,
R.
Morigaki
,
J.
Saito
,
M.
Ikeda
,
K.
Oka
, and
K.
Tanishita
,
Biochem. Biophys. Res. Commun.
270
,
616
(
2000
).
4.
M. A.
Haidekker
,
N.
L’Heureux
, and
J. A.
Frangos
,
Am. J. Physiol.
278
,
H1401
(
2000
).
5.
B.
Fisslthaler
,
S.
Dimmeler
,
C.
Hermann
,
R.
Busse
, and
I.
Fleming
,
Acta Physiol. Scand.
168
,
81
(
2000
).
6.
B. W.
Hochleitner
et al.,
Arterioscler. Thromb. Vascular Biol.
20
,
617
(
2000
).
7.
M. J.
Levesque
and
R. M.
Nerem
,
J. Biomech. Eng.
107
,
341
(
1985
).
8.
G.
Helmlinger
,
R. V.
Geiger
,
S.
Schreck
, and
R. M.
Nerem
,
J. Biomech. Eng.
113
,
123
(
1991
).
9.
J. A.
Frangos
,
L. V.
McIntire
, and
S. G.
Eskin
,
Biotechnol. Bioeng.
32
,
1053
(
1988
).
10.
H.
Tseng
,
T. E.
Peterson
, and
B. C.
Berk
,
Circ. Res.
77
,
869
(
1995
).
11.
H. J.
Schnittler
,
R. P.
Franke
,
U.
Akbay
,
C.
Mrowietz
, and
D.
Drenckhahn
,
Am. J. Physiol.
265
,
C289
(
1993
).
12.
S. R.
Bussolari
,
C. F.
Dewey
, and
M. A.
Gimbrone
,
Rev. Sci. Instrum.
53
,
1851
(
1982
).
13.
C. F.
Dewey
,
S. R.
Bussolari
,
M. A.
Gimbrone
, and
P. F.
Davies
,
J. Biomech. Eng.
103
,
177
(
1981
).
14.
P. F.
Davies
,
A.
Remuzzi
,
E. J.
Gordon
,
C. F.
Dewey
, and
M. A.
Gimbrone
,
Proc. Natl. Acad. Sci. U.S.A.
83
,
2114
(
1986
).
15.
J. N.
Topper
,
J.
Cai
,
D.
Falb
, and
M. A.
Gimbrone
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
10417
(
1996
).
16.
M. C.
LaPlaca
,
V. M.-Y.
Lee
, and
L. E.
Thibault
,
J. Neurotrauma
14
,
355
(
1997
).
17.
M. C.
LaPlaca
and
L. E.
Thibault
,
Ann. Biomed. Eng.
25
,
665
(
1997
).
18.
M. C.
LaPlaca
and
L. E.
Thibault
,
J. Neurosci. Res.
52
,
220
(
1998
).
19.
H.
Nomura
,
C.
Ishikawa
,
T.
Komatsuda
,
J.
Ando
, and
A.
Kamiya
,
Biorheology
25
,
461
(
1988
).
20.
J.
Ando
,
T.
Komatsuda
,
C.
Ishikawa
, and
A.
Kamiya
,
Biorheology
27
,
675
(
1990
).
21.
O.
Ono
,
J.
Ando
,
A.
Kamiya
,
Y.
Kuboki
, and
H.
Yasuda
,
Cell Struct. Function
16
,
365
(
1991
).
22.
B. L.
Langille
,
Biorheology
21
,
333
(
1984
).
23.
R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1977).
24.
H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1979).
25.
H. P.
Sdougos
,
S. R.
Bussolari
, and
C. F.
Dewey
,
J. Fluid Mech.
138
,
379
(
1984
).
26.
R. Berker, in Handbuch der Physik, edited by S. Flügge, (Springer-Verlag, Berlin, 1963), Vol. VIII/2, pp. 1–384.
27.
J. L.
Stevens
,
J. M.
Lopez
, and
B. J.
Cantwell
,
J. Fluid Mech.
389
,
101
(
1999
).
28.
G.
Gauthier
,
P.
Gondret
, and
M.
Rabaud
,
J. Fluid Mech.
386
,
105
(
1999
).
29.
H.-P.
Pao
,
Phys. Fluids
15
,
4
(
1972
).
30.
C. T.
Hill
,
Trans. Soc. Rheol.
16
,
213
(
1972
).
31.
J.
Ando
,
H.
Nomura
, and
A.
Kamiya
,
Microvasc. Res.
33
,
62
(
1987
).
32.
S.
Rosenblat
,
J. Fluid Mech.
6
,
206
(
1959
).
33.
G. N.
Lance
and
M. H.
Rogers
,
Proc. R. Soc. London, Ser. A
226
,
109
(
1962
).
34.
F.
Schultz-Grunow
,
Z. Angew. Math. Mech.
15
,
191
(
1935
).
35.
H. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1932).
36.
J. W.
Daily
and
R. E.
Nece
,
J. Basic Eng.
82
,
217
(
1960
).
37.
P. F.
Tomlan
and
J. L.
Hudson
,
Chem. Eng. Sci.
26
,
1591
(
1971
).
38.
A.
Khalili
and
H. J.
Rath
,
Z. Angew. Math. Phys.
45
,
670
(
1994
).
39.
T. G.
Lim
and
J. M.
Hyun
,
J. Fluids Eng.
119
,
115
(
1997
).
40.
E.
Lang
,
K.
Sridhar
, and
N. W.
Wilson
,
J. Fluids Eng.
116
,
815
(
1994
).
41.
R. L. Panton, Incompressible Flow (Wiley, New York, 1984).
42.
M. C.
Wendl
,
Phys. Rev. E
60
,
6192
(
1999
).
43.
W. Gröbner and N. Hofreiter, Integraltafel (Springer, Verlag, Vienna, 1961).
44.
R. F.
Folse
,
D. A.
Rodrigue
, and
D. L.
Courtney
,
Phys. Fluids
29
,
667
(
1986
).
45.
S. I.
Madanshetty
,
A.
Nadim
, and
H. A.
Stone
,
Phys. Fluids
8
,
2011
(
1996
).
46.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
This content is only available via PDF.
You do not currently have access to this content.