Coaxial disk devices are widely used at low Reynolds numbers to simulate cellular shear loading. Here, we develop a mathematical theory for analyzing fluid behavior in these instruments. It improves upon classical results by accounting for both unsteady dynamics and wall drag effects. All previous models are shown to be special cases of the present one. Most devices utilize a low aspect ratio, for which we find wall effects to be limited to small regions near the periphery. In these cases, classical theory yields acceptable precision over most of the domain. Investigators commonly simulate pulsatile effects using low-frequency sinusoidal forcing. Results indicate that fluid motion remains essentially harmonic, permitting the exact solution to be approximated by a simple separable expression. This approximation should be useful in analyzing specific configurations. A wavelike flow mode conjectured to exist at high Strouhal numbers is also discussed.
Skip Nav Destination
Article navigation
November 2001
Research Article|
November 01 2001
Mathematical analysis of coaxial disk cellular shear loading devices
Michael C. Wendl
Michael C. Wendl
School of Medicine and Department of Mechanical Engineering, Washington University, 4444 Forest Park Boulevard, Box 8501, Saint Louis, Missouri 63108
Search for other works by this author on:
Rev. Sci. Instrum. 72, 4212–4217 (2001)
Article history
Received:
April 13 2001
Accepted:
August 20 2001
Citation
Michael C. Wendl; Mathematical analysis of coaxial disk cellular shear loading devices. Rev. Sci. Instrum. 1 November 2001; 72 (11): 4212–4217. https://doi.org/10.1063/1.1409569
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00