We report on a scanning superconducting quantum interference device microscope operating at temperatures down to 20 mK in a dilution refrigerator. The instrument is designed for studying quantum mechanical coherence effects in mesoscopic systems and investigating magnetic effects on a mesoscopic length scale in novel materials. We have demonstrated the low-temperature operating capabilities of the instrument by studying superconducting tin disks and the superconducting transition of a thin-film tungsten sample and vortices in the same film. Looking forward, we discuss the applicability of the instrument to measurements of persistent currents in normal-metal rings.
REFERENCES
1.
V.
Chandrasekhar
, R. A.
Webb
, M. J.
Brady
, M. B.
Ketchen
, W. J.
Gallagher
, and A.
Kleinsasser
, Phys. Rev. Lett.
67
, 3578
(1991
).2.
3.
4.
M. B.
Ketchen
, D. D.
Awschalom
, W. J.
Gallagher
, A. W.
Kleinsasser
, R. L.
Sandstrom
, J. R.
Rozen
, and B.
Bumble
, IEEE Trans. Magn.
MAG-25
, 1212
(1989
).5.
6.
7.
L. R.
Narasimhan
, M.
Takigawa
, and M. B.
Ketchen
, Appl. Phys. Lett.
65
, 1305
(1994
).8.
9.
B. W.
Gardner
, J. C.
Wynn
, P. G.
Björnsson
, E. W. J.
Straver
, K. A.
Moler
, J. R.
Kirtley
, and M. B.
Ketchen
, Rev. Sci. Instrum.
72
, 2361
(2001
).10.
11.
Hypres design rules, http://www.hypres.com/designrule/rules.html (as of Jan. 15, 2001).
12.
J. R.
Kirtley
, M. B.
Ketchen
, K. G.
Stawiasz
, J. Z.
Sun
, W. J.
Gallagher
, S. H.
Blanton
, and S. J.
Wind
, Appl. Phys. Lett.
66
, 1138
(1995
).13.
A. M.
Chang
, H. D.
Hallen
, L.
Harriott
, H. F.
Hess
, H. L.
Kao
, J.
Kwo
, R. E.
Miller
, R.
Wolfe
, J.
van der Ziel
, and T. Y.
Chang
, Appl. Phys. Lett.
61
, 1974
(1992
).14.
B.
Cabrera
, R. M.
Clarke
, P.
Colling
, A. J.
Miller
, S.
Nam
, and R. W.
Romani
, Appl. Phys. Lett.
73
, 735
(1998
).15.
J. R.
Kirtley
, C. C.
Tsuei
, K. A.
Moler
, V. G.
Kogan
, J. R.
Clem
, and A. J.
Tuberfield
, Appl. Phys. Lett.
74
, 4011
(1999
).16.
Including the effects of the finite coherence length would tend to further spread out the vortices giving a lower value for the penetration depth. However, the coherence length is normally small on the scale of the SQUID, so the effect of the finite coherence length is likely to be small.
17.
M. B.
Ketchen
, M.
Bushan
, S. B.
Kaplan
, and W. J.
Gallagher
, IEEE Trans. Magn.
27
, 3005
(1991
).18.
M.
Büttiker
, Y.
Imry
, and R.
Landauer
, Phys. Lett.
96A
, 365
(1983
).19.
E. M. Q.
Jariwala
, P.
Mohanty
, M. B.
Ketchen
, and R. A.
Webb
, Phys. Rev. Lett.
86
, 1594
(2001
).20.
This content is only available via PDF.
© 2001 American Institute of Physics.
2001
American Institute of Physics
You do not currently have access to this content.