An ultrahigh-resolution x-ray crystal monochromator providing a 120 μeV bandwidth at 14.41 keV is presented. The design, which uses four independent silicon crystals and has an output beam parallel to the incident beam, may be generalized to arbitrary energies. Fluxes of 1.3×106 photons/s (1.0×107 photons/s) in bandwidths of 120±15 μeV (140±15 μeV) were measured. The performance of the monochromator, including the preservation of coherence through it, was verified by measurement of a 9.6±2.0% enhancement in the coincidence rate (i.e., γ(2)−1=0.096±0.020) in an intensity correlation experiment.

1.
Nuclear Resonant Scattering of Synchrotron Radiation, edited by E. Gerdau and H. de Waard (Baltzer Science, Bussum, The Netherlands, 1999/2000).
2.
See, for example, E. Burkel, Inelastic Scattering of X-rays with Very High Energy Resolution (Springer, Berlin, 1991);
F.
Sette
,
M. H.
Kirsch
,
C.
Masciovecchio
,
G.
Ruocco
, and
G.
Monaco
,
Science
280
,
1550
(
1998
), and references therein.
3.
W.
Graeff
and
G.
Materlik
,
Nucl. Instrum. Methods Phys. Res.
195
,
97
(
1982
);
B.
Dorner
,
E.
Burkel
, and
J.
Peisl
,
Nucl. Instrum. Methods Phys. Res. A
426
,
450
(
1986
);
R.
Verbeni
et al.,
J. Synchrotron Radiat.
3
,
62
(
1996
).
4.
G.
Faigel
,
D. P.
Siddons
,
J. B.
Hastings
,
P. E.
Haustein
,
J. R.
Grover
,
J. P.
Remeika
, and
A. S.
Cooper
,
Phys. Rev. Lett.
58
,
2699
(
1987
).
5.
T.
Ishikawa
,
Y.
Yoda
,
K.
Izumi
,
C. K.
Suzuki
,
X. W.
Zhang
,
M.
Ando
, and
S.
Kikuta
,
Rev. Sci. Instrum.
63
,
1015
(
1992
).
6.
T. S.
Toellner
,
T. S.
Mooney
,
S.
Shastri
, and
E. E.
Alp
,
Proc. SPIE
1740
,
218
(
1992
).
7.
D. P.
Siddons
,
U.
Bergmann
, and
J. B.
Hastings
,
Phys. Rev. Lett.
70
,
359
(
1993
).
8.
A. I.
Chumakov
,
J.
Metge
,
A. Q. R.
Baron
,
H.
Grünsteudel
,
H. F.
Grünsteudel
,
R.
Rüffer
, and
T.
Ishikawa
,
Nucl. Instrum. Methods Phys. Res. A
383
,
642
(
1996
).
9.
T. S.
Toellner
,
M. Y.
Hu
,
W.
Sturhahn
,
K.
Quast
, and
E. E.
Alp
,
Appl. Phys. Lett.
71
,
2112
(
1997
).
10.
A. I.
Chumakov
,
R.
Rüffer
,
O.
Leupold
,
A.
Barla
,
H.
Thiess
,
T.
Asthalter
,
B. P.
Doyle
,
A.
Snigirev
, and
A. Q. R.
Baron
,
Appl. Phys. Lett.
77
,
31
(
2000
).
11.
K.
Kohra
and
T.
Matsushita
,
Z. Naturforsch. Teil A
27A
,
484
(
1972
).
12.
S.
Kimura
,
J.
Harada
, and
T.
Ishikawa
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
50
,
337
(
1994
).
13.
We note that A. Q. R. Baron et al. recently developed a compact in-line HRM with four-bounce reflections including Bragg angles ∼π/2, where these problems are sophisticatedly solved. [
A. Q. R.
Baron
,
Y.
Tanaka
,
D.
Ishikawa
,
D.
Miwa
,
M.
Yabashi
,
A. I.
Chumakov
, and
T.
Ishikawa
,
J. Synchrotron Radiat.
8
,
1127
(
2001
)].
14.
K.
Kohra
and
K.
Kikuta
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
24
,
200
(
1968
);
T.
Ishikawa
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
44
,
496
(
1988
).
15.
J. W. M.
DuMond
,
Phys. Rev.
52
,
872
(
1937
);
K.
Nakayama
,
H.
Hashizume
,
A.
Miyoshi
,
S.
Kikuta
, and
K.
Kohra
,
Z. Naturforsch. Teil A
28
,
632
(
1973
).
16.
This energy was chosen for convenience in measuring the bandwidth via scattering from the nuclear resonance in Fe57.
17.
S.
Kikuta
and
K.
Kohra
,
J. Phys. Soc. Jpn.
29
,
1322
(
1970
).
18.
M.
Yabashi
et al.,
Nucl. Instrum. Methods Phys. Res. A
467–468
,
678
(
2001
).
19.
J. B.
Hastings
,
D. P.
Siddons
,
U.
van Bürck
,
R.
Hollatz
, and
U.
Bergmann
,
Phys. Rev. Lett.
66
,
770
(
1991
).
20.
In general, the resolution measurement using NFS with crystal rotation is valid when the energy spectrum of the incident beam for the rotated crystal (fourth crystal in our case) is sufficiently larger than the spectrum of the exit beam from the crystal. For our case, this condition was verified not only by the DuMond diagram analysis theoretically (Fig. 2), but also by the rocking curve measurements experimentally, where the rocking curve width for nonresonant signal (∼6 μrad) was sufficiently larger than that for NFS signal (∼1 μrad).
21.
Incident flux without the slit is estimated to be 6×1013 photon/s with a beam size of 0.5(V)×1.3 (H) mm2 (FWHM) at the monochromator position. Apart from the decrease of the throughput discussed in the text, the throughput was reduced by a factor of ∼15 because of the spatial acceptance of the HRM limited in the horizontal direction.
22.
For the calculation, a horizontal angular source size of 13.0 μrad (FWHM) seen from the UHRM position is used as an incident angular divergence, because the UHRM spatial acceptance is sufficiently smaller than the horizontal source size, 0.87 mm (FHWM).
23.
A. Q. R.
Baron
,
Y.
Kohmura
,
Y.
Ohishi
, and
T.
Ishikawa
,
Appl. Phys. Lett.
74
,
1492
(
1999
);
A. Q. R.
Baron
,
Y.
Kohmura
,
Y.
Ohishi
, and
T.
Ishikawa
,
J. Synchrontron Radiat.
6
,
935
(
1999
).
24.
E.
Ikonen
,
Phys. Rev. Lett.
68
,
2759
(
1992
).
25.
Y.
Kunimune
,
Y.
Yoda
,
K.
Izumi
,
M.
Yabashi
,
X. W.
Zhang
,
T.
Harami
,
M.
Ando
, and
S.
Kikuta
,
J. Synchrontron Radiat.
4
,
199
(
1997
);
E
Gluskin
,
E. E.
Alp
,
I.
McNulty
,
W.
Sturhahn
, and
J.
Sutter
,
J. Synchrontron Radiat.
6
,
1065
(
1999
).
26.
R.
Hanbury-Brown
and
R. Q.
Twiss
,
Nature (London)
177
,
27
(
1956
).
27.
During the experiment the SPring-8 storage ring was operated in 406 bunch mode with a bunch interval of 11.8 ns, which is sufficiently larger than the time resolution of the coincidence unit (Phillips Scientific Research, 754) used here. Actually, 32 buckets of 406 buckets were operated as empty bunches in order to avoid instability of orbital electrons, although this did not affect our experiment.
28.
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
This content is only available via PDF.
You do not currently have access to this content.