A compact electron beam ion trap (WEBIT) working at room temperature without any cryogenic components is described and experimentally investigated. The trap design is based on permanent magnet technology. For the formation of the electron beam a Pierce electron gun equipped with a cathode of high emissivity is used. The ion trap is created by a compressed electron beam passing through a drift tube system consisting of three sections with corresponding electrical trap potentials. X-ray spectra measured with a Si(Li) semiconductor detector indicate the production of Kr34+,Xe44+, Ce48+,Ir64+, and Hg66+ ions.

1.
R. W.
Schmieder
and
R. J.
Bastasz
,
AIP Conf. Proc.
274
,
675
(
1993
).
2.
R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas (IOP, Oxford, 1996), and references therein.
3.
E. D.
Donets
, USSR Inventors Certificate No. 248860, March 1967,
Bull. OIPOTZ
23
,
65
(
1969
).
4.
M. P.
Stöckli
,
Z. Phys. D: At., Mol. Clusters
21
,
111
(
1991
).
5.
M. A.
Levine
,
R. E.
Marrs
,
J. R.
Henderson
,
D. A.
Knapp
, and
M. B.
Schneider
,
Phys. Scr.
22
,
157
(
1988
).
6.
N.
Nakamura
et al.,
Rev. Sci. Instrum.
69
,
694
(
1998
).
7.
H.
Khodja
and
J. P.
Briand
,
Phys. Scr.
71
,
113
(
1997
).
8.
H.
Thomae
,
R.
Becker
,
H.
Bongers
, and
M.
Kleinod
,
Nucl. Instrum. Methods Phys. Res. B
98
,
577
(
1995
).
9.
M.
Kleinod
,
R.
Becker
,
H.
Bongers
,
M.
Weidenmüller
,
B.
Zipfel
, and
E. D.
Donets
,
Rev. Sci. Instrum.
67
,
986
(
1996
).
10.
M.
Kleinod
,
R.
Becker
,
H.
Höltermann
,
M.
Mücke
,
R.
Rao
,
M.
Weidenmüller
, and
B.
Zipfel
,
Rev. Sci. Instrum.
69
,
718
(
1998
).
11.
V. P.
Ovsyannikov
and
G.
Zschornack
,
Rev. Sci. Instrum.
70
,
2646
(
1999
).
12.
V. P. Ovsyannikov, F. Ullmann, T. Werner, and G. Zschornack, 20. Arbeitsbericht Energiereiche Atomare Stösse (EAS-20), Kassel, 1999, p. 102.
This content is only available via PDF.
You do not currently have access to this content.