The total flux and the flow profile of gas-phase molecular beams generated by a number of assemblies involving different combinations of apertures and capillary arrays were measured for a wide range of backing pressures covering the molecular and viscous flow regimes. Specifically, δ=10 and 50 μm diameter, L=2 mm thick glass capillary arrays were combined with single apertures of φ=0.17, 1.0, and 11.4 mm diameters and L=0.1, 0.5, and 2 mm thickness in order to design high-flux beam dosers with a high degree of collimation. The variations in the total flux and the spatial profile of the beams were tested as a function of the backing pressure, which was varied between 10−4 and 102Torr, by a sampling movable skimmer. The data obtained under the molecular flow (low backing pressure) regime corroborate some conclusions from previous reports. In particular, it is shown here that the conductance of the dosers (the ratio of the total flux of the beam to the backing pressure) depends only on their geometry in that regime. The beam profile, on the other hand, deteriorates with increasing backing pressure because of the increase in gas–wall and gas–gas collisions in the intermediate “opaque” flow regime where the mean free path of the gas, λ, is larger than the diameter of the capillaries, δ, but smaller than the length of the tubes, L. As λ approaches δ, a transition “slip” regime is reached, and a drop in the conductance of the doser is observed. Finally, by pressures where λ<0.05δ, a viscous laminar flow is established where the conductance of the doser increases with pressure and its directionality improves as well. The implications of our results to the design of molecular beams for specific applications are briefly discussed.

1.
K.
Suzuki
,
S.
Hiraoka
, and
S.
Nishimatsu
,
J. Appl. Phys.
64
,
3697
(
1988
).
2.
Z.
Lin
and
T. S.
Cale
,
Thin Solid Films
270
,
627
(
1995
).
3.
L. H.
Yao
et al.,
Nucl. Fusion
38
,
631
(
1998
).
4.
J. P.
Gordon
,
H. J.
Zeiger
, and
C. H.
Townes
,
Phys. Rev.
99
,
1264
(
1955
).
5.
K.
Mauersberger
,
Rev. Sci. Instrum.
48
,
1169
(
1977
).
6.
Y.
Ma
,
B. Y. H.
Liu
,
H. S.
Lee
,
K.
Mauersberger
, and
J.
Morton
,
J. Vac. Sci. Technol. A
14
,
2414
(
1996
).
7.
D. A.
King
and
M. G.
Wells
,
Surf. Sci.
29
,
454
(
1972
).
8.
T. E.
Madey
,
Surf. Sci.
33
,
355
(
1972
).
9.
T.
Engel
and
G.
Ertl
,
J. Chem. Phys.
69
,
1267
(
1978
).
10.
M.
Bowker
,
Q.
Guo
,
Y.
Li
, and
R. W.
Joyner
,
J. Chem. Soc., Faraday Trans.
91
,
3663
(
1995
).
11.
J.
Liu
,
M.
Xu
,
T.
Nordmeyer
, and
F.
Zaera
,
J. Phys. Chem.
99
,
6167
(
1995
).
12.
J.
Liu
,
M.
Xu
, and
F.
Zaera
,
Catal. Lett.
37
,
9
(
1996
).
13.
M.
Xu
,
J.
Liu
, and
F.
Zaera
,
J. Chem. Phys.
104
,
8825
(
1996
).
14.
H.
Öfner
and
F.
Zaera
,
J. Phys. Chem.
101
,
396
(
1997
).
15.
M.
Aryafar
and
F.
Zaera
,
J. Catal.
175
,
316
(
1998
).
16.
C. S.
Gopinath
and
F.
Zaera
,
J. Catal.
186
,
387
(
1999
).
17.
F.
Zaera
and
C. S.
Gopinath
,
J. Chem. Phys.
111
,
8088
(
1999
).
18.
C. S.
Gopinath
and
F.
Zaera
,
J. Phys. Chem. B
104
,
3194
(
2000
).
19.
C. T.
Campbell
and
S. M.
Valone
,
J. Vac. Sci. Technol. A
3
,
408
(
1985
).
20.
P.
Cong
et al.,
Angew. Chem. Int. Ed. Engl.
38
,
484
(
1999
).
21.
P.
Clausing
,
J. Vac. Sci. Technol.
8
,
636
(
1971
).
22.
S. Dushman, Scientific Foundations of Vacuum Technique, 2nd ed., edited by J. M. Lafferty (Wiley, New York, 1962).
23.
S.
Adamson
,
C.
O’Carroll
, and
J. F.
McGlip
,
Vacuum
38
,
341
(
1988
).
24.
D. C.
Gray
and
H. H.
Sawin
,
J. Vac. Sci. Technol. A
10
,
3229
(
1992
).
25.
J. A.
Giordmaine
and
T. C.
Wang
,
J. Appl. Phys.
31
,
463
(
1960
).
26.
D. R.
Olander
and
V.
Kruger
,
J. Appl. Phys.
41
,
2769
(
1970
).
27.
G. C.
Angel
and
R. A.
Giles
,
J. Phys. B
5
,
80
(
1972
).
28.
H. C. W.
Beijerinck
and
N. F.
Verster
,
J. Appl. Phys.
46
,
2083
(
1975
).
29.
H. P.
Steinrück
and
K. D.
Rendulic
,
Vacuum
36
,
213
(
1986
).
30.
A.
Winkler
and
J. T.
Yates
, Jr.
,
J. Vac. Sci. Technol. A
6
,
2929
(
1988
).
31.
D. M.
Murphy
,
J. Vac. Sci. Technol. A
7
,
3075
(
1989
).
32.
D. E.
Kuhl
and
R. G.
Tobin
,
Rev. Sci. Instrum.
66
,
3016
(
1995
).
33.
C. B.
Lucas
,
Vacuum
23
,
395
(
1972
).
34.
A. M.
Glines
,
R. N.
Carter
, and
A. B.
Anton
,
Rev. Sci. Instrum.
63
,
1826
(
1992
).
35.
D. A.
Scheinowitz
,
K.
Werner
, and
S.
Radelaar
,
J. Vac. Sci. Technol. A
12
,
3228
(
1994
).
36.
C. M.
Davies
and
C. B.
Lucas
,
J. Phys. D
16
,
1
(
1983
).
37.
M. V.
Kurepa
and
C. B.
Lucas
,
J. Appl. Phys.
52
,
664
(
1981
).
38.
S. L.
Thomson
and
W. R.
Owens
,
Vacuum
25
,
151
(
1975
).
39.
B. B. Dayton, in 1956 National Symposium on Vacuum Technology Transactions, edited by E. S. Perry and J. H. Durant (Pergamon, New York, 1956), p. 5.
40.
Vacuum Physics and Technology, edited by G. L. Weissler and R. W. Carlson (Academic, New York, 1979).
41.
K.
Nanbu
,
Vacuum
35
,
573
(
1985
).
42.
J. F. O’Hanlon, A User’s Guide to Vacuum Technology (Wiley, New York, 1980).
43.
J. C.
Helmer
and
G.
Levi
,
J. Vac. Sci. Technol. A
13
,
2592
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.