With this work we review the development of theoretical and experimental aspects of the scanning flow cytometry (SFC). The optical and hydrodynamic systems of the SFC provide the measurement of fluorescence and light scattering of individual particles with a typical rate up to 500 particles/s. In addition the optical system of the SFC has the capability of individual particle analysis beyond that of an ordinary flow cytometry. The SFC measures an entire angular dependency of light scattering intensity (flying light scattering indicatrix, FLSI) over angles ranging from 5° to 120°. The fluorescence collection efficiency of the SFC approaches 1/3 of a sphere. Moreover, the optical system of the SFC provides the measurement of fluorescence in a time-resolved mode on a microsecond time scale. The processing of the output data in light scattering is based on a parametric solution of the inverse light-scattering problem, the FLSI method. The FLSI method allows the determination of size and refractive index of spherically modeled particles over a range of diameters from 0.9 to 15 μm and a range of refractive indexes from 1.37 to 1.60. The performance of the SFC in different applications has been demonstrated.

1.
P. K. Horan, K. A. Muirhead, and S. E. Slezak, “Standards and controls in flow cytometry,” in Flow Cytometry and Sorting, 2nd ed., edited by M. R. Melamed, T. Lindmo, and M. L. Mendelsohn (Wiley, New York, 1990).
2.
G. C. Salzman, S. B. Singham, R. G. Johnston, and C. F. Bohren, “Light scattering and cytometry,” in Flow Cytometry and Sorting, 2nd ed., edited by M. R. Melamed, T. Lindmo, and M. L. Mendelsohn (Wiley, New York, 1990).
3.
L. L. Wheeless, “Slit scanning,” in Flow Cytometry and Sorting, 2nd ed., edited by M. R. Melamed, T. Lindmo, and M. L. Mendelsohn (Wiley, New York, 1990).
4.
V. P.
Maltsev
,
Russ. Chem. Bull.
43
,
1115
(
1994
).
5.
D. D.
Cooke
and
M.
Kerker
,
J. Colloid Interface Sci.
42
,
150
(
1973
).
6.
E.
Marx
and
G. W.
Mulholland
,
J. Res. Natl. Bur.
88
,
321
(
1983
).
7.
A.
Ashkin
and
J. M.
Dziedzic
,
Appl. Opt.
19
,
660
(
1980
).
8.
R. M. P.
Doornbos
,
M.
Schaeffer
,
A. G.
Hoekstra
,
P. M. A.
Sloot
,
B. G.
de Grooth
, and
J.
Greve
,
Appl. Opt.
35
,
729
(
1996
).
9.
N.
Damaschke
,
G.
Gouesbet
,
G.
Grehan
, and
C.
Tropea
,
Meas. Sci. Technol.
9
,
137
(
1998
).
10.
P. H.
Kaye
,
Meas. Sci. Technol.
9
,
141
(
1998
).
11.
I. A.
Ludlow
and
P. H.
Kaye
,
J. Colloid Interface Sci.
69
,
571
(
1979
).
12.
P. H.
Kaye
,
E.
Hirst
, and
Z.
Wang-Thomas
,
Appl. Opt.
36
,
6149
(
1997
).
13.
E.
Hirst
and
P. H.
Kaye
,
J. Geophys. Res.
,
101
,
19231
(
1997
).
14.
M.
Bartholdi
,
G. C.
Salzman
,
R. D.
Heibert
, and
M.
Kerker
,
Appl. Opt.
19
,
1573
(
1980
).
15.
M. R.
Loken
,
R. G.
Sweet
, and
L. A.
Herzenberg
,
J. Histochem. Cytochem.
24
,
284
(
1976
).
16.
K. D.
Lofftus
,
M. S.
Quinby-Hunt
,
A. J.
Hunt
,
F.
Livolant
, and
M. F.
Maestre
,
Appl. Opt.
31
,
2924
(
1992
).
17.
G. M.
Quist
and
P. J.
Wyatt
,
J. Opt. Soc. Am. A
2
,
1979
(
1985
).
18.
M. R.
Jones
,
B. P.
Curry
,
M. Q.
Brewster
, and
K. H.
Leong
,
Appl. Opt.
33
,
4025
(
1994
).
19.
I. K.
Ludlow
and
J.
Everitt
,
Phys. Rev. E
51
,
2516
(
1995
).
20.
I. K.
Ludlow
and
J.
Everitt
,
Phys. Rev. E
53
,
2909
(
1996
).
21.
S.
Min
and
A.
Gomez
,
Appl. Opt.
35
,
4919
(
1996
).
22.
T. L.
Warner
and
E. D.
Hirleman
,
J. Inst. Environ. Sci.
40
,
15
(
1997
).
23.
Z.
Ulanowski
,
Z.
Wang
,
P. H.
Kaye
, and
I. K.
Ludlow
,
Appl. Opt.
37
,
4027
(
1998
).
24.
M. A.
Condrau
,
R. A.
Schwendener
,
P.
Niederer
, and
M.
Anliker
,
Cytometry
16
,
187
(
1994
).
25.
M. A.
Condrau
,
R. A.
Schwendener
,
M.
Zimmermann
,
M. H.
Muser
,
U.
Graf
,
P.
Niederer
, and
M.
Anliker
,
Cytometry
16
,
195
(
1994
).
26.
A. V.
Chernyshev
,
V. I.
Prots
,
A. A.
Doroshkin
, and
V. P.
Maltsev
,
Appl. Opt.
34
,
6301
(
1995
).
27.
V. P. Maltsev and A. V. Chernyshev, US Patent Number 5,650,847 (Jul. 22, 1997).
28.
E.
Soini
and
T.
Lovgren
,
Crit. Rev. Anal. Chem.
18
,
105
(
1987
).
29.
V. P.
Maltsev
,
A. V.
Chernyshev
,
A. A.
Doroshkin
, and
E.
Soini
,
Proc. SPIE
2386
,
199
(
1995
).
30.
E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).
31.
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
32.
J. T.
Soini
,
A. V.
Chernyshev
,
P. E.
Hänninen
,
E.
Soini
, and
V. P.
Maltsev
,
Cytometry
31
,
78
(
1998
).
33.
H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
34.
D. J.
Wielaard
,
M. I.
Mishchenko
,
A.
Macke
, and
B. E.
Carlson
,
Appl. Opt.
36
,
4305
(
1997
).
35.
H.
Brenner
,
Chem. Eng. Sci.
18
,
1
(
1963
).
36.
V. Kachel, H. Fellner-Feldegg, and E. Menke, “Hydrodynamic properties of flow cytometry instruments,” in Flow Cytometry and Sorting, 2nd ed., edited by M. R. Melamed, T. Lindmo, and M. L. Mendelsohn (Wiley, New York, 1990).
37.
V. P.
Maltsev
,
A. V.
Chernyshev
,
K. A.
Sem’yanov
, and
E.
Soini
,
Appl. Opt.
35
,
3275
(
1996
).
38.
V. P.
Maltsev
,
A. V.
Chernyshev
,
K. A.
Sem’yanov
, and
E.
Soini
,
Meas. Sci. Technol.
8
,
1023
(
1997
).
39.
V. P.
Maltsev
and
V. N.
Lopatin
,
Appl. Opt.
36
,
6102
(
1997
).
40.
J.
Frengen
,
T.
Lindmo
,
E.
Paus
,
R.
Schmid
, and
K.
Nustad
,
J. Immunol. Methods
178
,
141
(
1995
).
41.
T.
Lindmo
,
O.
Bormer
,
J.
Ugelstad
, and
K.
Nustad
,
J. Immunol. Methods
126
,
183
(
1990
).
42.
D. J.
Newman
,
H.
Henneberry
, and
C. P.
Price
,
Ann. Clin. Biochem.
29
,
22
(
1992
).
43.
A. V.
Chernyshev
,
A. E.
Soini
,
V. P.
Maltsev
, and
E.
Soini
,
Macromolecules
31
,
6455
(
1998
).
44.
A. N.
Shvalov
,
A. V.
Chernyshev
,
J. T.
Soini
,
P. A.
Tarasov
,
E.
Soini
, and
V. P.
Maltsev
,
Appl. Opt.
38
,
230
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.