An efficient method for evaluating asymmetric diffraction peak profile functions based on the convolution of the Lorentzian or Gaussian function with any asymmetric window function is proposed. When this method is applied to approximate the convolution with the Howard’s window function [J. Appl. Crystallogr. 15, 615 (1982)], only a few terms of numerical integration give satisfactory results, even if the asymmetry is very strong.

1.
C. J.
Howard
,
J. Appl. Crystallogr.
15
,
615
(
1982
).
2.
F.
Schreier
,
J. Quant. Spectrosc. Radiat. Transf.
48
,
743
(
1992
).
3.
G. K.
Wertheim
,
M. A.
Butler
,
K. W.
West
, and
D. N. E.
Buchanan
,
Rev. Sci. Instrum.
45
,
1369
(
1974
).
4.
P.
Thompson
,
D. E.
Cox
, and
J. B.
Hastings
,
J. Appl. Crystallogr.
20
,
79
(
1987
).
5.
M. M.
Hall
, Jr.
,
J. Appl. Crystallogr.
10
,
66
(
1977
).
6.
B.
van Laar
and
W. B.
Yelon
,
J. Appl. Crystallogr.
17
,
47
(
1984
).
7.
T.
Ida
,
Rev. Sci. Instrum.
69
,
2268
(
1998
).
8.
L. W.
Finger
,
D. E.
Cox
, and
A. P.
Jephcoat
,
J. Appl. Crystallogr.
27
,
892
(
1994
).
9.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986), Chap. 12.
This content is only available via PDF.
You do not currently have access to this content.