We describe a far‐infrared electron‐paramagnetic‐resonance (EPR) spectrometer for broadband (100–300 GHz) use. The spectrometer is operated in the reflection mode and uses broadband quasioptical methods to separate the transmitted from the reflected radiation. We describe and illustrate its operation at 170 GHz (1.8 mm) and compare its performance to that of our transmission mode spectrometer operating at 250 GHz. We also discuss the advantages of the reflection bridge for performing EPR experiments over a broad range of frequencies, and we consider methods of improving the performance of the bridge. This includes a novel design for variable coupling of the reflection‐mode Fabry–Pérot resonator.

1.
K. A. Earle, D. E. Budil, and J. H. Freed, in Advances in Magnetic and Optical Resonance, edited by W. Warren (Academic, New York, 1996), Vol. 19, Chap. 3.
2.
W. B.
Lynch
,
K. A.
Earle
, and
J. H.
Freed
,
Rev. Sci. Instrum.
59
,
1345
(
1988
).
3.
J. A. Allgeier, J. A. J. M. Disselhorst, R. T. Weber, W. T. Wenckebach, and J. Schmidt, in Modern Pulsed and Continuous Wave Electron Paramagnetic Resonance, edited by L. Kevan and M. Bowman (Wiley, New York, 1990), Chap. 6.
4.
A. L.
Barra
,
L.-C.
Brunel
, and
J. B.
Robert
,
Chem. Phys. Lett.
165
,
107
(
1990
).
5.
O. Y.
Grinberg
,
A. A.
Dubinskij
, and
Y. S.
Lebedev
,
Russ. Chem. Rev.
52
,
850
(
1983
).
6.
K. A.
Earle
,
J. K.
Moscicki
,
M.
Ge
,
D. E.
Budil
, and
J. H.
Freed
,
Biophys. J.
66
,
1213
(
1994
).
7.
W. B.
Lynch
,
R. S.
Boorse
, and
J. H.
Freed
,
J. Am. Chem. Soc.
115
,
10
909
(
1993
).
8.
K. A.
Earle
,
D. E.
Budil
, and
J. H.
Freed
,
J. Phys. Chem.
97
,
13
289
(
1993
).
9.
P. F. Goldsmith, in Infrared and Millimeter Waves: Systems and Components, edited by K. J. Button (Academic, New York, 1982), Chap. 5.
10.
D. S. Tipikin, K. A. Earle, and J. H. Freed (unpublished).
11.
D. E.
Budil
,
K. A.
Earle
, and
J. H.
Freed
,
J. Phys. Chem.
97
,
1294
(
1993
).
12.
D. H.
Shin
,
J. L.
Dye
,
D. E.
Budil
,
K. A.
Earle
, and
J. H.
Freed
,
J. Phys. Chem.
97
,
1213
(
1993
).
13.
T.
Matsui
,
K.
Araki
, and
M.
Kiyokawa
,
IEEE Trans. Microwave Theory Tech.
MTT-41
,
1710
(
1993
).
14.
E. Hecht and A. Zajac, Optics (Addison–Wesley, Reading, MA, 1979).
15.
J. C. G. Lesurf, Millimeter-wave optics, devices and systems (Adam Hilger, London, 1990).
16.
J.
Howard
,
W. A.
Peebles
, and
N. C.
Luhmann
, Jr.
,
Int. J. Infrared Millimeter Waves
7
,
1591
(
1986
).
17.
J. L. Doane, in Millimeter Components and Techniques, edited by K. J. Button (Academic, New York, 1985), pp. 123–171.
18.
R. J.
Wylde
,
IEE Proc.
131-H
,
258
(
1984
).
19.
J. A.
Murphy
,
Int. J. Infrared Millimeter Waves
8
,
1165
(
1987
).
20.
R. K.
Garg
and
M. M.
Pradhan
,
Infrared Phys.
18
,
292
(
1978
).
21.
H.
Kogelnik
,
Appl. Opt.
4
,
1562
(
1965
).
22.
J. R.
Birch
,
J. D.
Dromey
, and
J.
Lesurf
,
Infrared Phys.
21
,
225
(
1981
).
23.
A. F. Harvey, Microwave Engineering (Academic, New York, 1963), pp. 44–45.
24.
D.
Boucher
,
J.
Burie
,
R.
Bocquet
, and
W.
Chen
,
Int. J. Infrared Millimeter Waves
13
,
1395
(
1992
).
25.
E. M. T.
Jones
and
S. B.
Cohn
,
J. Appl. Phys.
26
,
452
(
1955
).
26.
A. E.
Costley
,
K. H.
Hursey
,
C. F.
Neill
, and
J. M.
Ward
,
J. Opt. Soc. Am.
67
,
979
(
1977
).
27.
D. A.
Bathker
,
IEEE Trans. Microwave Theory Tech.
MTT-15
,
128
(
1967
).
28.
G. D. Holah, in Infrared and Millimeter Waves: Systems and Components, edited by K. J. Button (Academic, New York, 1982), Chap. 6.
29.
R.
Ulrich
,
Infrared Phys.
7
,
37
(
1967
).
30.
M. L.
Khidekel
and
E. I.
Zhilyaeva
,
Synth. Met.
4
,
1
(
1981
).
31.
C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer, Berlin, 1989).
32.
J. P. Barnes, K. A. Earle, and J. H. Freed (unpublished results).
33.
M. V. Schneider, in Infrared and Millimeter Waves: Systems and Components, edited by K. J. Button (Academic, New York, 1982), Vol. 6, Chap. 4.
34.
N. R.
Erickson
,
Int. J. Infrared Millimeter Waves
8
,
1015
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.