A new model description and type classification carried out on its base of a wide variety of practical hysteresis loops are suggested. An analysis of the loop approximating function was carried out; the parameters and characteristics of the model were defined—coersitivity, remanent polarization, value of hysteresis, spontaneous polarization, induced piezocoefficients, value of saturation, hysteresis losses of energy per cycle. It was shown that with piezomanipulators of certain hysteresis loop types, there is no difference in heat production. The harmonic linearization coefficients were calculated, and the harmonically linearized transfer function of a nonlinear hysteresis element was deduced. The hysteresis loop type was defined that possesses minimum phase shift. The average relative approximation error of the model has been evaluated as 1.5%–6% for real hysteresis loops. A procedure for definition of the model parameters by experimental data is introduced. Examples of using the results in a scan unit of a scanning tunneling microscope for compensation of raster distortion are given.

1.
E. P. Popov, The Theory of Nonlinear Automation Control Systems (Nauka, Moscow, 1988) (in Russian).
2.
E. P. Popov and I. P. Paltov, Approximation Methods for Investigation of Nonlinear Automatic Systems (Fizmatgiz, Moscow, 1960) (in Russian).
3.
B. Janković, Proceedings of the 5th International Conference on Nonlinear Oscillations, Kiev, 1969 Vol. 4, p. 503.
4.
R. Bouc in Ref. 3, p. 100.
5.
L. E. C.
van de Leemput
,
P. H. H.
Rongen
,
B. H.
Timmerman
, and
H.
van Kempen
,
Rev. Sci. Instrum.
62
,
989
(
1991
).
6.
S.
Vieira
,
IBM J. Res. Dev.
30
,
553
(
1986
).
7.
E. P.
Stoll
,
Ultramicroscopy
42–44
,
1585
(
1992
).
8.
E. P.
Stoll
,
Rev. Sci. Instrum.
65
,
2864
(
1994
).
9.
D. W.
Pohl
,
IBM J. Res. Dev.
30
,
417
(
1986
).
10.
O.
Nishikawa
,
M.
Tomitori
, and
A.
Minakuchi
,
Surf. Sci.
181
,
210
(
1987
).
11.
R. C.
Barrett
and
C. F.
Quate
,
Rev. Sci. Instrum.
62
,
1393
(
1991
).
12.
L.
Libioulle
,
A.
Ronda
,
M.
Taborelli
, and
J. M.
Gilles
,
J. Vac. Sci. Technol. B
9
,
655
(
1991
).
13.
S.-Y.
Liu
and
I-W.
Chen
,
J. Am. Ceram. Soc.
75
,
1191
(
1992
).
14.
G. A. Korn and T. M. Korn, Mathematical Handbook (McGraw-Hill, New York, 1968).
15.
S.
Hirano
,
T.
Yogo
,
K.
Kikuta
,
Y.
Araki
,
M.
Saitoh
, and
S.
Ogasahara
,
J. Am. Ceram. Soc.
75
,
2785
(
1992
).
16.
C. D. E.
Lakeman
and
D. A.
Payne
,
J. Am. Ceram. Soc.
75
,
3091
(
1992
).
17.
D. W.
Pohl
and
R.
Möller
,
Rev. Sci. Instrum.
59
,
840
(
1988
).
18.
R. V.
Lapshin
and
O. V.
Obyedkov
,
Rev. Sci. Instrum.
64
,
2883
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.