An improved, high‐performance version of the concentric vacuum chamber design is shown for forming ions at high pressure in a strong magnetic field and detecting them in an adjacent Fourier transform ion cyclotron resonance mass spectrometry (FTICR) trapped ion cell. Improvements in system design, including primarily the addition of a mechanical shutter to halt the flow of neutrals to the trapped ion cell during FTICR detection, allow a more than 100‐fold improvement in pressure drop between the source and analyzer chamber to be realized. Within a 20 cm distance, ions formed in an electrospray ion source at atmosphere are transported across five concentric tube conductance limits to a trapped ion cell at a shuttered pressure below 2×10−9 Torr. High resolution detection of electrosprayed proteins is demonstrated and, for example, mass resolutions of 1×105 for the +14 charge state of horse heart myoglobin (at m/z 1211) and 2×105 for +5 charge state of bovine insulin (at m/z 1147) are obtained. The original advantages of the concentric tube vacuum chamber are retained. Forming the ions within the magnetic field permits a 40‐fold enhancement in sensitivity to be obtained. Narrow kinetic energy distributions are achieved because magnetic field confinement eliminates the need for complex electric focusing assemblies that exhibit mass discrimination and broaden the kinetic energy distribution. Finally, the shutter is demonstrated to serve effectively as an alternative to pulsed valve assemblies for the transient introduction of a collision gas to the trapped ion cell.

1.
M. B.
Comisarow
and
A. G.
Marshall
,
Chem. Phys. Lett.
25
,
282
(
1974
).
2.
M. B.
Comisarow
,
J. Chem. Phys.
69
,
4097
(
1978
).
3.
A. G.
Marshall
and
P. B.
Grosshans
,
Anal. Chem.
63
,
215A
(
1991
).
4.
K. P.
Wanczek
,
Int. J. Mass Spectrom. Ion Proc.
95
,
1
(
1989
).
5.
M. V.
Buchanan
and
R. L.
Hettich
,
Anal. Chem.
65
,
245A
(
1993
).
6.
D. A. Laude, Jr. and S. C. Beu, in Experimental Mass Spectrometry, edited by D. H. Russell (Plenum, New York, 1994).
7.
M.
Yamashita
and
J. B.
Fenn
,
J. Phys. Chem.
88
,
4451
(
1984
).
8.
C. M.
Whitehouse
,
R. N.
Freyer
,
M.
Yamashita
, and
J. B.
Fenn
,
Anal. Chem.
57
,
675
(
1985
).
9.
J. B.
Fenn
,
M.
Mann
,
C. K.
Meng
,
S. F.
Wong
, and
C. M.
Whitehouse
,
Science
246
,
64
(
1989
).
10.
R. D.
Smith
,
J. A.
Loo
,
C. G.
Edmonds
,
C. J.
Barinaga
, and
H. R.
Udseth
,
Anal. Chem.
62
,
882
(
1990
).
11.
D.
Suckau
,
Y.
Shi
,
S. C.
Beu
,
M. W.
Senko
,
J. P.
Quinn
,
F. M.
Wampler
, and
F. W.
McLafferty
,
Proc. Natl. Acad. Sci. U.S.A.
90
,
790
(
1993
).
12.
C. J.
Cassady
,
J.
Wronka
,
G. H.
Kruppa
, and
F. H.
Laukien
,
Rapid Commun. Mass Spectrom.
8
,
394
(
1994
).
13.
M. W.
Senko
,
J. P.
Speir
, and
F. W.
McLafferty
,
Anal. Chem.
66
,
2801
(
1994
).
14.
D. P.
Little
,
J. P.
Speir
,
M. W.
Senko
,
P. B.
O’Connor
, and
F. W.
McLafferty
,
Anal. Chem.
66
,
2809
(
1994
).
15.
S. A. Hofstadler, J. H. Wahl, R. Bakhtiar, G. A. Anderson, J. E. Bruce, and R. D. Smith, J. Am. Soc. Mass Spectrom. (in press).
16.
S. C.
Beu
,
M. W.
Senko
,
J. P.
Quinn
,
F. M.
Wampler
III
, and
F. W.
McLafferty
,
J. Am. Soc. Mass Spectrom.
4
,
557
(
1993
).
17.
K. D.
Henry
and
F. W.
McLafferty
,
Org. Mass Spectrom.
25
,
490
(
1990
).
18.
K. D.
Henry
,
E. R.
Williams
,
B. H.
Wang
,
F. W.
McLafferty
,
J.
Shabanowitz
, and
D. W.
Hunt
,
Proc. Natl. Acad. Sci. USA
86
,
9075
(
1989
).
19.
R. T.
Mclver
, Jr.
,
R. L.
Hunter
, and
W. D.
Bower
,
Int. J. Mass Spectrom. Ion Proc.
64
,
67
(
1985
).
20.
C. B.
Lebrilla
,
I. J.
Amster
, and
R. T.
McIver
, Jr.
,
Int. J. Mass Spectrom. Ion Proc.
87
,
R7
(
1989
).
21.
B. E.
Winger
,
S. A.
Hofstadler
,
J. E.
Bruce
,
H. R.
Udseth
, and
R. D.
Smith
,
J. Am. Soc. Mass Spectrom.
4
,
566
(
1993
).
22.
R. E.
Smalley
,
Anal. Instrum.
17
,
1
(
1988
).
23.
J. M.
Alford
,
F. D.
Weiss
,
R. T.
Laaksonen
, and
R. E.
Smalley
,
J. Phys. Chem.
90
,
4480
(
1986
).
24.
G. H. Kruppa, P. Caravatti, C. Radloff, S. Zurcher, F. Laukien, C. Waston, and J. Wronka, in FT-ICR/MS: Industrial Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, edited by B. Asamote (VCH, New York, 1991).
25.
C. H. Watson, J. Wronka, P. Caravatti, and F. Laukien, Proceedings of the 39th ASMS Conference on Mass Spectrometry and Allied Topics, Washington, DC, 1992 (unpublished), p. 1655.
26.
D. P. Littlejohn and S. Ghaderi, U.S. Patent No. 4581533 (1986).
27.
E. D.
Lee
,
J. D.
Henion
,
R. B.
Cody
, and
J. A.
Kissinger
,
Anal. Chem.
59
,
1309
(
1987
).
28.
S. A.
Hofstadler
and
D. A.
Laude
, Jr.
,
Anal. Chem.
64
,
569
(
1992
).
29.
S. A.
Hofstadler
,
E.
Schmidt
,
Z.
Guan
, and
D. A.
Laude
, Jr.
,
J. Am. Soc. Mass Spectrom.
4
,
168
(
1993
).
30.
S. A.
Hofstadler
,
S. C.
Beu
, and
D. A.
Laude
, Jr.
,
Anal. Chem.
65
,
312
(
1993
).
31.
V. L.
Campbell
,
Z.
Guan
, and
D. A.
Laude
, Jr.
,
J. Am. Soc. Mass Spectrom.
5
,
221
(
1994
).
32.
S. K.
Chowdhury
,
V.
Katta
, and
B. T.
Chait
,
Rapid Commun. Mass Spectrom.
1
,
91
(
1990
).
33.
S. C.
Beu
and
D. A.
Laude
, Jr.
,
Int. J. Mass Spectrom. Ion Proc.
112
,
215
(
1992
).
34.
V. L. Campbell, Z. Guan, and D. A. Laude, Jr., Proceedings of the 41st ASMS Conference on Mass Spectrometry and Allied Topics, San Francisco, CA, 1993 (unpublished), p. 443.
35.
J. A.
Loo
,
H. R.
Udseth
, and
R. D.
Smith
,
Rapid Commun. Mass Spectrom.
2
,
207
(
1988
).
36.
C. J.
Barinaga
,
C. G.
Edmonds
,
H. R.
Udseth
, and
R. D.
Smith
,
Rapid Commun. Mass Spectrom.
5
,
160
(
1989
).
37.
M. W.
Senko
,
S. C.
Beu
, and
F. W.
McLafferty
,
Anal. Chem.
66
,
415
(
1994
).
38.
E. R.
Williams
,
K. D.
Henry
, and
F. W.
McLafferty
,
J. Am. Chem. Soc.
112
,
6157
(
1990
).
39.
Z.
Guan
,
S. A.
Hofstadler
, and
D. A.
Laude
, Jr.
,
Anal. Chem.
65
,
1588
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.