A Mach probe is used to measure poloidal and toroidal flows induced by a biased electrode in IMS. Mach probe theories are reviewed and classified as either magnetized or unmagnetized. A simple geometric model of the IMS Mach probe shows that the variation of the effective probe area as a function of the probe orientation with respect to the magnetic field is 20%–25%, predicting the probe to be only slightly magnetized. Measurements of the variation in the total ion saturation current collected by the probe, as the angle with respect to the magnetic field is varied, demonstrate this level of magnetization only at low neutral pressure at large minor radius, while in other cases the variation in the total collected current is negligible. Based on this result an unmagnetized model [M. Hudis and L. M. Lidsky, J. Appl. Phys. 41, 5011 (1970)] is chosen to analyze the IMS Mach probe data. Comparison of Mach probe poloidal flow measurements as a function of minor radius to calculations of the E×B drift velocity and the ion diamagnetic drift velocity from radial profiles of floating potential and ion saturation current, respectively, shows agreement to within 15%.

1.
K. H.
Burrell
,
T. N.
Carlstrom
,
E. J.
Doyle
,
D.
Finkenthal
,
P.
Gohil
,
R. J.
Groebner
,
D. L.
Hillis
,
J.
Kim
,
H.
Matsumoto
,
R. A.
Moyer
,
T. H.
Osborne
,
C. L.
Rettig
,
W. A.
Peebles
,
T. L.
Rhodes
,
H. St.
John
,
R. D.
Stambaugh
,
M. R.
Wade
, and
J. G.
Watkins
,
Plasma Phys. Controlled Fusion
34
,
1859
(
1992
).
2.
A. R.
Field
,
G.
Fussmann
,
J. V.
Hofmann
, and the ASDEX Team,
Nucl. Fusion
32
,
1191
(
1992
).
3.
P.
Gohil
,
K. H.
Burrell
,
R. J.
Groebner
, and
R. P.
Seraydarian
,
Rev. Sci. Instrum.
61
,
2949
(
1990
).
4.
N.
Hawkes
and
N.
Peacock
,
Rev. Sci. Instrum.
63
,
5164
(
1992
).
5.
K.
Ida
and
S.
Hidekuma
,
Rev. Sci. Instrum.
60
,
867
(
1989
).
6.
Y. B.
Kim
,
P. H.
Diamond
, and
R. J.
Groebner
,
Phys. Fluids B
3
,
2050
(
1991
).
7.
P. J.
Harbour
and
G.
Proudfoot
,
J. Nucl. Mater.
121
,
222
(
1984
).
8.
C. S.
Maclatchy
,
C.
Boucher
,
D. A.
Poirier
, and
J.
Gunn
,
Rev. Sci. Instrum.
63
,
3923
(
1992
).
9.
P. C.
Stangeby
,
Phys. Fluids
27
,
2699
(
1984
).
10.
I. H.
Hutchinson
,
Phys. Fluids
30
,
3777
(
1987
).
11.
I. H.
Hutchinson
,
Phys. Rev. A
37
,
4358
(
1988
).
12.
K-S.
Chung
and
I. H.
Hutchinson
,
Phys. Rev. A
38
,
4721
(
1988
).
13.
K-S.
Chung
,
I. H.
Hutchinson
,
B.
LaBombard
, and
R. W.
Conn
,
Phys. Fluids B
1
,
2229
(
1989
).
14.
D. T.
Anderson
,
J. A.
Derr
, and
J. L.
Shohet
,
IEEE Trans. Plasma Sci.
9
,
212
(
1981
).
15.
M.
Hudis
and
L. M.
Lidsky
,
J. Appl. Phys.
41
,
5011
(
1970
).
16.
H. M.
Mott-Smith
and
I.
Langmuir
,
Phys. Rev.
28
,
727
(
1926
).
17.
E. A.
Bering
,
M. C.
Kelly
,
F. S.
Mozer
, and
U. V.
Fahleson
,
Planet. Space Sci.
21
,
1983
(
1973
).
18.
P. G.
Matthews
,
D. T.
Anderson
,
F. S. B.
Anderson
,
J. L.
Shohet
, and
J. N.
Talmadge
,
Phys. Fluids B
5
,
4061
(
1993
).
19.
R. J.
Taylor
,
M. L.
Brown
,
B. D.
Fried
,
H.
Grote
,
J. R.
Liberati
,
G. J.
Morales
,
P.
Pribyl
,
D.
Darrow
, and
M.
Ono
,
Phys. Rev. Lett.
63
,
2365
(
1989
).
20.
L. G.
Askinazi
,
V. E.
Golant
,
S. V.
Lebedev
,
V. A.
Rozhanskij
, and
M.
Tendler
,
Nucl Fusion
32
,
271
(
1992
).
21.
N. Hershkowitz, Plasma Diagnostics: Discharge Parameters and Chemistry (Academic, New York, 1989), p. 131.
22.
P. G. Matthews, PhD thesis, the University of Wisconsin—Madison, 1993.
23.
R.
Van Nieuwenhove
and
G.
Van Oost
,
Rev. Sci. Instrum.
59
,
1053
(
1988
).
24.
J. N. Talmadge, M. Coronado, B. J. Peterson, H. Gao, D. T. Anderson, F. S. B. Anderson, P. G. Matthews, and J. L. Shohet, Proceedings of the 9th International Workshop on Stellarators (Garching, Germany, 1993), p. 146.
This content is only available via PDF.
You do not currently have access to this content.