For a V‐shaped atomic force microscopy cantilever beam, the spring constants in the three principal directions are given in terms of the beam geometry and material properties. For the lateral stiffness, a closed‐formed expression is presented. Also, the normal and the longitudinal stiffness are obtained from a few simple equations. The results are compared with a finite element study and found to be very accurate. All spring constants depend strongly on the cantilever thickness, which is difficult to measure. In addition, the lateral and longitudinal stiffness are sensitive to the location and the height of the attached pyramid.

1.
C.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
B.
Drake
,
C. B.
Prater
,
A. L.
Weisenhorn
,
S. A. C.
Gould
,
T. R.
Albrecht
,
C. F.
Quate
,
D. S.
Conell
,
H. C.
Hansma
, and
P. K.
Hansma
,
Science
243
,
1586
(
1989
).
3.
W. A.
Ducker
,
T. J.
Senden
, and
R. M.
Pashely
,
Nature
353
,
239
(
1991
);
H.-J.
Butt
,
Biophys. J.
60
,
1438
(
1991
).
4.
J. P.
Cleveland
,
S.
Manne
,
D.
Bocek
, and
P. K.
Hansma
,
Rev. Sci. Instrum.
64
,
403
(
1993
).
5.
T. J.
Senden
and
W. A.
Ducker
,
Langmuir
10
,
1003
(
1994
).
6.
J. E.
Sader
and
L.
White
,
J. Appl. Phys.
74
,
1
(
1993
).
7.
C. M.
Mate
,
C. M.
McClelland
,
R.
Erlandsson
, and
S.
Chiang
,
Phys. Rev. Lett.
59
,
1942
(
1987
).
8.
E.
Meyer
,
R.
Overney
,
D.
Brodbeck
,
L.
Howald
,
R.
Luthi
,
J.
Frommer
, and
H.-J.
Güntherodt
,
Phys. Rev. Lett.
69
,
1777
(
1992
).
9.
R.
Overney
and
E.
Meyer
,
Mater. Res. Soc. Bull.
26
(May
1993
).
10.
Equations for similar plate-shaped values appear in Ref. 7.
11.
G.
Meyer
and
N. M.
Amer
,
Appl. Phys. Lett.
53
,
1045
(
1988
).
12.
S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).
This content is only available via PDF.
You do not currently have access to this content.