Electron cyclotron resonance (ECR) plasma reactors are being used for ultralarge scale integrated circuit fabrication to meet the stringent requirements on submicron feature etching. Three issues are critical for ECR reactor design: plasma uniformity, ion energy control, and wafer temperature control. Plasma uniformity is important for minimizing over etch times and reducing the probability of producing charging damage. Ion energy control is needed to optimize etching rate, anisotropy, and selectivity without compromising device yield. Wafer temperature control is important because large ion currents at low pressure can result in wafer heating and thereby alter the rates of surface chemical processes. An ECR plasma reactor is described that is designed to etch compound semiconductors and Si at low temperatures (−170 to 20 °C), where superior selectivity and linewidth control are achievable. By measuring dc bias, floating potential, and ion saturation current densities it is shown that ion energies in this system can be controlled by applying an rf bias to the sample. To characterize plasma uniformity, the radial ion density profile is measured using a fast injection Langmuir probe. Hollow, peaked, or uniform radial plasma density profiles can be obtained depending on microwave power, pressure, and magnetic field. Plasma density profiles are influenced by microwave absorption and refraction which, in turn, are influenced by both the magnetic field and plasma density profiles. The net result is a strong coupling between wave propagation and charge particle transport. To control wafer temperature a cryogenic electrode capable of maintaining a wafer temperature to ±2.5 °C at −170 °C is used while the wafer is exposed to an electron cyclotron resonance plasma. The sample temperature is monitored using infrared laser interferometric thermometry and the heat flux to the wafer surface in an Ar plasma is measured as a function of operating parameters by monitoring temperature transients as the discharge is gated on and off.

1.
J. M.
Cook
and
K. G.
Donohue
,
Solid State Technol.
34
,
119
(
1991
).
2.
P.
Singer
,
Semiconductor International
8
,
52
(
1992
).
3.
D. L.
Flamm
,
Solid State Technol.
14
,
47
(
1991
).
4.
M. Lieberman and R. A. Gottscho, in Physics of Thin Films, edited by M. Francombe and J. Vossen (Academic, New York, 1993).
5.
J.
Asmussen
,
J. Vac. Sci. Technol. A
7
,
883
(
1989
).
6.
S.
Samukawa
,
Y.
Suzuki
, and
M.
Sasaki
,
Appl. Phys. Lett.
57
,
403
(
1990
).
7.
K. D.
Choquette
,
R. C.
Wetzel
,
R. S.
Freund
, and
R. F.
Kopf
,
J. Vac. Sci. Technol. B
10
,
2725
(
1992
).
8.
D.
Dane
,
P.
Gadgil
, and
T. D.
Mantei
,
J. Vac. Sci. Technol. B
10
,
1312
(
1992
).
9.
See Ref. 7–63 in Ref. 4.
10.
R. K. Proteous, H. M. Wu, and D. B. Graves (unpublished).
11.
J. E.
Stevens
,
Y. C.
Huang
,
R. L.
Jarecki
, and
J. L.
Cecchi
,
J. Vac. Sci. Technol. A
10
,
1270
(
1992
);
J. E. Stevens, Y. C. Huang, and J. L. Cecchi, Abstract LB-8 presented at the 45th Annual Gaseous Electronics Conference, Boston MA, October 1992;
J. E. Stevens, Y. C. Huang, and J. L. Cecchi, unpublished results (personal communication).
12.
Y. H.
Lee
,
J. E.
Heindreich
III
, and
G.
Fortuno
,
J. Vac. Sci. Technol. A
7
,
903
(
1989
).
13.
O.
Popov
,
A. O.
Westner
, and
A. Z.
Drybanski
,
Rev. Sci. Instrum.
63
,
4432
(
1992
).
14.
J.
Forster
and
W.
Holber
,
J. Vac. Sci. Technol. A
7
,
899
(
1989
).
15.
W.
Holber
and
J.
Forster
,
J. Vac. Sci. Technol. A
8
,
3720
(
1990
).
16.
J. S.
McKillop
,
J. C.
Forster
, and
W.
Holber
,
J. Vac. Sci. Technol. A
7
,
908
(
1989
).
17.
T.
Nakano
,
N.
Sadeghi
, and
R. A.
Gottscho
,
Appl. Phys. Lett.
58
,
458
(
1991
).
18.
N.
Sadeghi
,
T.
Nakano
,
D. J.
Trevor
, and
R. A.
Gottscho
,
J. Appl. Phys.
70
,
2552
(
1991
);
N.
Sadeghi
,
T.
Nakano
,
D. J.
Trevor
, and
R. A.
Gottscho
,
J. Appl. Phys.
71
,
3648
(
1992
).,
J. Appl. Phys.
19.
D. J.
Trevor
,
N.
Sadeghi
,
T.
Nakano
,
J.
Derouard
,
R. A.
Gottscho
,
P. D.
Foo
, and
J. M.
Cook
,
Appl. Phys. Lett.
57
,
1188
(
1990
).
20.
S. M.
Gorbatkin
,
L. A.
Berry
, and
J. B.
Roberto
,
J. Vac. Sci. Technol. A
8
,
2893
(
1990
).
21.
J. S.
McKillop
,
J. C.
Forster
, and
W.
Holber
,
J. Vac. Sci. Technol. A
7
,
908
(
1989
).
22.
H.
Nihei
,
J.
Morikawa
,
D.
Nagahara
,
H.
Enomoto
, and
N.
Inoue
,
Rev. Sci. Instrum.
63
,
1932
(
1992
).
23.
J.
Forster
,
C. C.
Klepper
,
L. A.
Berry
, and
S. M.
Gorbatkin
,
J. Vac. Sci. Technol. A
10
,
3114
(
1992
).
24.
A. A.
Shatas
,
Y. Z.
Hu
, and
E. A.
Irene
,
J. Vac. Sci. Technol. A
10
,
3119
(
1992
).
25.
P.
Reinke
,
S.
Schelz
,
W.
Jacob
, and
W.
Moller
,
J. Vac. Sci. Technol. A
10
,
434
(
1992
).
26.
D. A.
Carl
,
M. C.
Williamson
,
M. A.
Lieberman
, and
A. J.
Lichtenberg
,
J. Vac. Sci. Technol. B
9
,
339
(
1991
).
27.
C. T.
Gabriel
and
J. P.
McVittie
,
Solid State Technol.
6
,
81
(
1992
);
C. T.
Gabriel
,
J. Vac. Sci. Technol. B
9
,
370
(
1991
);
T.
Namura
,
H.
Uchida
,
Y.
Todokoro
,
M.
Inoue
,
J. Vac. Sci. Technol. B
9
,
2752
(
1991
).,
J. Vac. Sci. Technol. B
28.
K.
Tsujimoto
,
S.
Okudaira
, and
S.
Tachi
,
Jpn. J. Appl. Phys.
30
,
3319
(
1991
).
29.
J. A. Gregus, M. F. Vernon, R. A. Gottscho, G. R. Scheller, W. S. Hobson, R. L. Opila, and E. Yoon, accepted to appear in Plasma Proc. and Plasma Chem.
30.
K. P.
Giapis
,
G. R.
Scheller
,
R. A.
Gottscho
,
W. S.
Hobson
, and
Y. H.
Lee
,
Appl. Phys. Lett.
57
,
983
(
1990
).
31.
V. M.
Donnelly
and
J. A.
McCaulley
,
J. Vac. Sci. Technol. A
8
,
84
(
1990
);
The technique described in this reference has recently been extended to monitor direction of temperature changes as well as single side polished samples (V. M. Donnelly, unpublished).
32.
S. M.
Gorbatkin
and
L. A.
Berry
,
J. Vac. Sci. Technol. A
10
,
3104
(
1992
).
33.
Without the quartz cover the electrode is sputtered onto the quartz microwave entrance window. The metal covered window reflects the microwaves launched from the source and makes it difficult to strike or sustain a plasma. Metal deposition on the microwave entrance window is minimized with the quartz electrode cover. The deposits (which can still build up with time) can be cleaned by maintaining a plasma with a magnetic field profile such that the ECR zone is immediately in front of the window (see also Ref. 20).
34.
If the sample can be heated to above 180°C (e.g., sample without a photoresist mask) the sample is In soldered to the holder. Otherwise, the sample is clamped with In foil underneath. Both techniques work equally well but the former is more reliable.
35.
R. J.
Visser
,
J. Vac. Sci. Technol. A
7
,
189
(
1989
).
36.
A.
Mitchell
and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
8
,
1712
(
1990
).
37.
S.
Maniv
,
J. Appl. Phys.
69
,
8144
(
1991
).
38.
F. F. Chen in Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965), Chap. 4.
39.
J. D. Swift and M. J. R. Schwar, Electrical Probes for Plasma Diagnostics (Elsevier, New York, 1969).
40.
D. Bohm, in The Characteristic of Electrical Discharges in Magnetic Fields, edited by R. K. Wakerling and A. Guthrie (McGraw-Hill, New York, 1949).
41.
M. D. Bowden, T. Okamoto, F. Kimura, H. Muta, T. Sakoda, K. Muraoka, M. Maeda, Y. Manabe, M. Kitagawa, and T. Kimura (unpublished).
42.
K. P. Giapis, N. Sadeghi, J. Margot, R. A. Gottscho, and T. C. Lee (unpublished).
43.
E. S.
Aydil
and
D. J.
Economou
,
J. Electrochem. Soc.
140
,
1471
(
1993
).
44.
C. J. Mogab, in VLSI Technology, edited by S. M. Sze (McGraw-Hill, New York, 1983), Chap. 8, p. 303.
45.
Heating of the sample takes place on a shorter time scale. For the range of heating rate and heat transfer coefficients measured in this study, the sample temperature reaches a steady state within 1 min. Assuming, as an example, that the temperature increases by 30 °C, one would obtain ten fringes in 1 min or one fringe/6 s.
46.
E. S. Aydil, J. A. Gregus, and R. A. Gottscho, J. Vac. Sci. Technol. A (to be published).
47.
Sufficiently far from the source, the decrease in ion current density from an axial position z1 to z2 due to divergence of the plasma can be estimated from J+(z1)/J+(z2) ≅ B(z1)/B(z2), assuming that ▿¨J+ ≅ 0 (i.e., no ionization between zx and z2) and ▿¨B = 0. In this study, the ion current density at the electrode is estimated to be 0.58 times the ion current density measured 5 cm in front of the electrode.
48.
P.
Reinke
,
S.
Schelz
,
W.
Jacob
, and
W.
Moller
,
J. Vac. Sci. Technol. A
10
,
434
(
1992
).
49.
M. A.
Jarnyk
,
J. A.
Gregus
,
E. S.
Aydil
, and
R. A.
Gottscho
,
Appl. Phys. Lett.
62
,
2039
(
1993
).
50.
S.
Samukawa
and
T.
Nakamura
,
Jpn. J. Appl. Phys.
30
,
3147
(
1991
);
S.
Samukawa
,
S.
Mori
, and
M.
Sasaki
Jpn. J. Appl. Phys.
29
,
792
(
1990
); ,
Jpn. J. Appl. Phys., Suppl.
S.
Samukawa
,
M.
Sasaki
, and
Y.
Suzuki
,
J. Vac. Sci. Technol. B
8
,
1062
(
1990
);
S.
Samukawa
,
S.
Mori
, and
M.
Sasaki
,
J. Vac. Sci. Technol. A
9
,
85
(
1991
).
51.
N.
Fujiwara
,
H.
Sawai
,
M.
Yoneda
,
K.
Hishioka
,
K.
Horie
,
K.
Nakamoto
, and
H.
Abe
Jpn. J. Appl. Phys.
30
,
3147
(
1991
).
52.
T. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962);
W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Anisotropic Plasmas (MIT, Cambridge, MA 1963).
53.
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1981).
This content is only available via PDF.
You do not currently have access to this content.