A method for the high‐temperature generation of reactive species in supersonic molecular beams has been developed. Pyrolysis temperatures (25–1800 °C) can be maintained for longer than 100 h for extended experiments. Short contact time (≊10 μs) of the seeded (<1 Torr partial pressure in 2 atm inert carrier gas) precursor molecules suppresses recombination of the product radicals. Number densities for radicals are estimated to be ≊1014 cm−3 at the sonic orifice with radical fluxes of ≊1016 s−1.
REFERENCES
1.
P.
Chen
, S. D.
Colson
, W. A.
Chupka
, and J. A.
Berson
, J. Phys. Chem.
90
, 2319
(1986
).2.
P.
Chen
, S. D.
Colson
, and W. A.
Chupka
, Chem. Phys. Lett.
147
, 466
(1988
).3.
J. A.
Blush
, J.
Park
, and P.
Chen
, J. Am. Chem. Soc.
111
, 8951
(1989
).4.
J. A. Blush and P. Chen, J. Phys. Chem. (in press).
5.
6.
H.
Clauberg
, D. W.
Minsek
, and P.
Chen
, J. Am. Chem. Soc.
114
, 99
(1992
).7.
8.
D. W.
Minsek
, J. A.
Blush
, and P.
Chen
, J. Phys. Chem.
96
, 2025
(1992
).9.
D. W. Kohn and P. Chen (unpublished).
10.
11.
H. Daneshyar, One-Dimensional Compressible Flow (Pergamon, New York, 1976);
A. H. Shapiro, Compressible Fluid Flow (Ronald, New York, 1953).
12.
H. R. Murphy and D. R. Miller, Proceedings of the 13th International Symposium on Rarified Gas Dynamics (Plenum, New York, 1985);
D. R. Miller, M. A. Fineman, and H. R. Murphy, in Proceedings of the 14th International Symposium on Rarified Gas Dynamics (University of Tokyo, Tokyo, 1984).
This content is only available via PDF.
© 1992 American Institute of Physics.
1992
American Institute of Physics
You do not currently have access to this content.