The dispersive analysis of the x‐ray continuum is employed to determine the electron temperature of a dense pinched plasma. A curved crystal spectrometer was used to obtain the desired dispersion, and two or more pin (doubly diffused silicon) diodes were used to monitor the time‐resolved emission. The dispersive technique is inherently more accurate than filtering techniques and simpler to implement than laser scattering techniques. In an experimental verification of the technique, the time‐resolved temperature of a plasma focus pinch was measured under various conditions, and was found to be consistent with density observations and MHD calculations. It was possible to observe the cooling effect of radiation emission from seeded plasma focus discharges. The elliptical crystal spectrometer is shown to be well suited to the analysis of the x‐ray emission from a pinched plasma source.

1.
C.
De Michelis
and
M.
Mattioli
,
Nucl. Fus.
21
,
667
(
1981
).
2.
R. W. P. McWhirter, in Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1964), p. 201.
3.
D. Evans, in Applied Atomic Collision Physics, Vol. 2 (Plasmas) (Academic, New York, 1984), p. 191.
4.
G. Magyar, in Plasma Physics and Nuclear Fusion Research, edited by R. Gill (Academic, New York, 1981), p. 535.
5.
S. Segre, in Plasma Diagnostics and Data Acquisition, edited by A. Eubank and E. Sindoni (Edizioni Compositori, Bologna, 1975), p. 265.
6.
R. C. Elton, Naval Research Laboratory Rep. 6738, Dec. 11, 1968.
7.
B. V.
Robouch
and
J. P.
Rager
,
J. Appl. Phys.
44
,
1527
(
1973
).
8.
R. Gill, in Plasma Physics and Nuclear Fusion Research, edited by R. Gill (Academic, New York, 1981), p. 551.
9.
B. L.
Henke
,
H. T.
Yamada
, and
T. J.
Tanaka
,
Rev. Sci. Instrum.
54
,
1311
(
1983
).
10.
I. I. Sobelmann, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer, New York, 1981).
11.
W. H. Tucker, Radiation Processes in Astrophysics (The MIT Press, Cambridge, 1975).
12.
I. I. Sobelmann, Atomic Spectra and Radiative Transitions (Springer, New York, 1981).
13.
P. D. Rockett, Los Alamos ournal Rep. LA‐UR‐78‐2761 (1978).
14.
R. L.
Gullickson
and
R. H.
Barlett
,
Adv. X‐ray Anal.
18
,
184
(
1971
).
15.
N. J.
Peacock
,
R. J.
Speer
, and
M. G.
Hobby
,
J. Phys. B Ser. 2
,
2
,
798
(
1969
).
16.
J. N.
Downing
and
M.
Eisner
,
Phys. Fluids
18
,
991
(
1975
).
17.
A.
Burek
,
Space Sci. Instru.
2
,
53
(
1976
).
18.
B. L.
Henke
,
P.
Lee
,
T. J.
Tanaka
,
R. L.
Shimabukuro
, and
B. K.
Fujikawa
,
At. Data Nucl. Data Tables
27
,
1
(
1982
).
19.
B. L.
Henke
,
Nucl. Instrum. Methods
177
,
161
(
1980
).
20.
J.
Hohlfelder
,
X‐ray Anal.
17
,
531
(
1973
).
21.
E. P. Bertin, Principles and Practice of X‐ray Spectroscopy (Plenum, New York, 1975).
22.
J. W. Mather, in Methods of Experimental Physics, Vol. 9 (B) (Academic, New York, 1971), p. 187.
23.
W.
Stygar
,
G.
Gerdin
, and
F.
Venneri
,
Nucl. Fus.
22
,
1161
(
1982
).
24.
F.
Venneri
,
K.
Boulais
, and
G.
Gerdin
,
Phys. Fluids B
2
,
1613
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.