A drift method is described for measuring specific heats in intense magnetic fields at low temperatures. Capacitance thermometry is used, and an automated data‐collection system utilizes the imbalance of a transformer‐ratio‐arm bridge to process the capacitance data. The zero‐field specific heat must be known, and measurement of the in situ drift in zero‐field calibrates the thermal link. Additional calibration of the link is required if the link’s magnetothermal conductivity effects are significant, and a specific example of a copper‐wire link is presented. The method resolves complex structure in the specific heat near a steep λ‐type anomaly, as illustrated by measurements on a chromite spinel at 7.5 T. The uncertainty in the method is estimated to be ≂±7%.

1.
See the review of low‐temperature calorimetry by R. W. Hill in Experimental Cryophysics, edited by F. E. Hoare, L. C. Jackson, and N. Kurti, (Butterworths, London, 1961).
2.
W. N.
Lawless
,
Rev. Sci. Instrum.
42
,
561
(
1971
).
3.
L. G.
Rubin
and
W. N.
Lawless
,
Rev. Sci. Instrum.
42
,
571
(
1971
);
note that the loss tangent, the in‐phase component of the capacitance signal, is related to the ac conductivity and therefore can be H‐field dependent.
4.
W. P.
Pratt
,
S. S.
Rosenblum
,
W. A.
Steyert
, and
J. A.
Barclay
,
Cryogenics
17
,
689
(
1977
).
5.
W. N.
Lawless
,
Rev. Sci. Instrum.
46
,
625
(
1975
);
C. A.
Swenson
,
Rev. Sci. Instrum.
48
,
489
(
1977
).
6.
W. N.
Lawless
,
Rev. Sci. Instrum.
51
,
1567
(
1980
).
7.
W. N.
Lawless
,
Phys. Rev. B
14
,
134
(
1976
).
8.
W. N.
Lawless
and
E. A.
Panchyk
,
Cryogenics
12
,
196
(
1972
).
9.
R. W. Arenz, C. F. Clark, and W. N. Lawless, Phys. Rev. B (in press).
10.
C. F. Gerald, Applied Numerical Analysis (Addison‐Wesley, London, 1978).
11.
L. G. Rubin (private communication).
This content is only available via PDF.
You do not currently have access to this content.