Apparatus and procedures are described for the high‐resolution measurement of resonance shifts and for the observation of broad line shapes. Included are a discussion of magnet design and a summary of empirical results obtained in the construction and field homogenization of two large permanent magnets. Narrow, complex resonance lines, with components separated by as little as a milligauss, are resolved by a combination of homogeneous applied magnetic field, small samples, and slow‐sweep field modulation. Broad absorption line shapes are plotted at fixed frequency by a system incorporating a regenerative oscillator, a narrow band amplifier, a recording potentiometer, and an electronic control for varying the applied magnetic field linearly in time. A simple cryostat provides stable temperatures from 85° to 500°K. In the case of samples with short spin‐lattice relaxation times, such as the metals, improved signal‐to‐noise ratios are obtained by adjusting the oscillator to super‐regenerative operation and observing the frequency modulation associated with the dispersive component of the resonance.

1.
R. V.
Pound
and
W. D.
Knight
,
Rev. Sci. Instr.
21
,
219
(
1950
), and references cited therein.
2.
W. G.
Proctor
,
Phys. Rev.
79
,
35
(
1950
).
3.
Bloembergen
,
Purcell
, and
Pound
,
Phys. Rev.
73
,
679
(
1948
).
4.
G. E.
Pake
,
Am. J. Phys.
18
,
438
,
473
(
1950
).
5.
H. S.
Gutowsky
and
C. J.
Hoffman
,
J. Chem. Phys.
19
,
1259
(
1951
) and prior work referred to there.
6.
R. M.
Brown
,
Phys. Rev.
78
,
530
(
1950
).
7.
H. L.
Anderson
,
Phys. Rev.
76
,
1460
(
1949
).
8.
Arnold
,
Dharmatti
, and
Packard
,
J. Chem. Phys.
19
,
507
(
1951
).
9.
G. E.
Pake
,
J. Chem. Phys.
16
,
327
(
1948
).
10.
R. V.
Pound
,
Phys. Rev.
79
,
685
(
1950
).
11.
F.
Bitter
and
F. E.
Reed
,
Rev. Sci. Instr.
22
,
171
(
1951
).
12.
Sommers
,
Weiss
, and
Halpern
,
Rev. Sci. Instr.
22
,
612
(
1951
).
13.
R. L. Sanford, “Permanent Magnets,” Natl. Bur. Standards (U.S.), Circ. C448 (1944), p. 21.
14.
M. E.
Packard
and
J. T.
Arnold
,
Phys. Rev.
83
,
210A
(
1951
).
15.
Gutowsky
,
McCall
,
McGarvey
, and
Meyer
,
J. Am. Chem. Soc.
74
,
4809
(
1952
).
16.
Pulse and spin‐echo techniques can be used also to determine chemical shifts and multiplet structures. For example, see
E. L.
Hahn
,
Phys. Rev.
80
,
580
(
1950
)
and
E. L.
Hahn
and
D. E.
Maxwell
,
Phys. Rev.
84
,
1246
(
1951
). Such techniques do not appear to require as homogeneous fields as the steady‐state methods described in this article; however, the instrumentation and the analysis of the observables are more complex.
17.
B. A.
Jacobsohn
and
R. K.
Wangsness
,
Phys. Rev.
73
,
942
(
1948
).
18.
G. E. Valley and H. Wallman, Vacuum Tube Amplifiers, Radiation Laboratory Series (McGraw‐Hill Book Company, Inc., New York, 1948), Vol. 18, p. 615.
19.
N. J.
Hopkins
,
Rev. Sci. Instr.
20
,
401
(
1949
).
20.
A.
Roberts
,
Rev. Sci. Instr.
18
,
845
(
1947
).
21.
R. H.
Dicke
,
Rev. Sci. Instr.
17
,
268
(
1946
).
22.
N. A.
Schuster
,
Rev. Sci. Instr.
22
,
254
(
1950
).
23.
Volkoff
,
Petch
, and
Smellie
,
Can. J. Phys.
30
,
270
(
1952
).
24.
Ours were made by Podbielniak, Inc., Chicago, Illinois. We have since learned that H. S. Martin and Company, Evanston, Illinois, also will make special Dewars.
25.
Available from Warren Wire Company, Pownal, Vermont.
26.
R.
Gabillard
and
M.
Soutif
,
Compt. Rend.
230
,
1754
(
1950
).
This content is only available via PDF.
You do not currently have access to this content.