We present quantitative motivations and assessments of various proposed and ongoing directions to further improving yields and target gain of igniting indirect-drive implosions at the National Ignition Facility (NIF). These include increasing compression and confinement time, improving hohlraum and ablator efficiency, and further increasing peak power and laser energy. 1D hydroscaled simulations, augmented by analytic 1D theory, have been used to project yield improvements for each of these implosion optimization tracks, normalized to the best current performing 4 MJ shot. At current NIF capabilities of 2.2 MJ, 450 TW, we project several paths could reach 15 MJ yield levels. We also expect several key implosion physics questions will be addressed in attempting to reach this yield level. These include demonstrating to what extent lower adiabat designs leading to higher compression will increase gain and efficiency, and whether we can reduce residual kinetic energy and ablator-fuel mix that is probably limiting the current burn-up fraction. For an envisaged NIF upgrade to EL = 3 MJ at fixed 450 TW peak power, scaling capsule size and fuel thicknesses faster than pure hydroscaling should allow for yields that could reach up to 60–80 MJ, depending on the efficiency gains realized in increasing deuterium-tritium fuel thickness, reducing hohlraum losses, and switching to lower Z ablators. The laser-plasma instability and beam transmission scaling in these larger hohlraums is shown to be favorable if the spot size is increased with hohlraum scale.

In inertial confinement fusion experiments at the National Ignition Facility (NIF), a spherical shell of deuterium-tritium (DT) fuel is imploded to reach the conditions needed for fusion, self-heating, and eventual ignition. In the principal approach to indirect-drive, x rays created by a laser-heated hohlraum ablatively drive a spherical shell surrounding a layer of frozen DT fuel (capsule). Since ignition (thermal instability according to Lawson criterion1) and target gain > 1 (fusion energy > laser energy into target) were achieved recently,2 interest has now evolved beyond the pre-ignition research directions.3 The major current goals are further improving neutron yields and performance robustness using current NIF capabilities, and extrapolating to what might be achievable if a proposed NIF Extended Yield Capability (EYC) (an upgrade adding 40% more laser energy, from 2.2 to 3 MJ) is realized.

Increasing neutron yields will open up new high energy density (HED) science regimes and applications.4,5 For example, the large neutron fluxes for yields above 10 MJ will allow access to astrophysically relevant excited state and nonlinear reaction rate nuclear physics in the presence of dense plasma screening.6,7 More robustly burning designs may permit not just samples at the hohlraum wall,8 but doping low Z capsule ablators with otherwise ignition quenching radiochemical tracers.9 Probing the limits on achievable driver efficiency and target gain (ratio of fusion to laser energy) will aid in setting requirements for a future high yield facility, and is synergistic with the renewed interest in inertial fusion energy.10 Accompanying the high neutron flux is intense alpha particle heating of the fuel, driving a blast wave that leads to strong ablator reradiation.11 This has the potential to create hohlraum temperatures greater than by just using the 500 TW NIF laser, for studying extreme HED regimes in material opacity and equation of state.5,12 In all these ventures, increasing neutron yields can improve data signal-to-noise ratio and counting statistics, as well as allow for larger or more samples that can be simultaneously exposed to a given neutron or x-ray flux.

In this paper, we use 1D hydroscaled simulations augmented by analytic 1D theory to project yield improvements for each implosion optimization track, normalized to the best current performing 4 MJ shot. These tracks include increasing compression and confinement time, improving hohlraum and capsule ablator efficiency and increasing laser energy and peak power. Key tradeoffs emerge from simulations and 1D analytic theory that help explain the experimental strategies. At current NIF13,14 capabilities of 2 MJ, 450 TW, we have identified several paths to reaching 10–15 MJ yield levels, and presumably even higher by combining successful design optimizations. We discuss the challenges in each approach, and the key questions that need to be addressed. These first include principally laser pulse shape strategies, testing to what extent lower adiabat designs leading to higher compression will increase gain and efficiency, and whether we can reduce residual stagnated fuel non-uniformities and ablator-fuel mix that are probably limiting the current burn-up fraction. A second set of approaches seek to improve hohlraum and capsule efficiency, for which the challenges include maintaining sufficient drive symmetry control, mitigation of laser backscatter losses and the effects of capsule engineering features such as the support film.

In the last sections, we present an example scaling strategy for utilizing a proposed NIF upgrade to EL = 3 MJ at fixed 450 TW peak power. The hohlraum and capsule radii are scaled as EL1/2 while the DT fuel thickness is scaled even faster, linearly with EL, compared to the usual hydroscaling as EL1/3. We show how this self-consistently leads to designs with ≈5%–10% lower hohlraum radiation temperatures Tr, and consequently capsules imploding with ≈5%–10% lower implosion velocities (vimp) while still meeting the conditions for ignition. The larger capsule and fuel thicknesses should allow for yields that could reach up to 60–80 MJ, depending on the efficiency gains realized in reducing hohlraum losses and switching to lower average Z ablators (e.g., glow discharge polymer plastic, CH, vs current, high density carbon, HDC). Simple 1D Stimulated Brillouin Scattering (SBS) gain scaling in these larger hohlraums is shown to be favorable (i.e., less SBS losses) if the laser spot size is increased with hohlraum scale. The scaling for drive symmetry control is also favorable, with hotter coronal plasmas predicted due to reduced conduction losses in larger hohlraums allowing for more inner cone transmission. The challenges here will be controlling the radiation drive symmetry in smaller, more efficient hohlraums and for lower density more efficient ablators such as CH that require longer laser pulse drives. We emphasize throughout the importance attached to testing laser-plasma instability (LPI), hohlraum energetics and capsule ablator scalings and sensitivities using both integrated and focused experiments.

In Sec. II, we describe and validate the use of 1D theory and simulations to extrapolate yields as function of drive laser energy and capsule size. In Secs. III–V, we assess through simple analytic models, normalized to the existing highest performance implosions, the expected performance improvements through increased compression and confinement, hohlraum and ablator efficiency and laser energy, respectively. We summarize in Sec. VI, followed by three appendices with more details on derivations.

We assess the paths to higher yield by starting with a 1D analytic model of an implosion in the absence of alpha heating. Three conditions are necessary for robust ignition and propagating burn in ICF spherical implosions. First, a high enough peak shell implosion velocity vimp (typically greater than 330 μm/ns at NIF-scale) is needed to bring the stagnated DT hotspot ion temperature Ti above 4–5 keV. Second, the scale or inner radius R of the capsule ablator has to be sufficient to provide a stagnated DT hotspot areal density ρrhs above ≈0.3 g/cm2, comparable to the alpha range. The combination of those two15 conditions will allow for a sufficient burn rate such that alpha heating will overcome radiative loss. The third condition is based on the requirement of having sufficient fuel and remaining ablator areal density ρr at stagnation, above ≈1.2 g/cm2 based on existing data and 1D simulations,16 so that the burn rate can exponentiate and propagate into the cold fuel before target disassembly. These conditions are illustrated by the following 1D model16,17 of an indirectly driven implosion, validated by data and simulations:
Y n o α M imp v imp 5.4 ρ r 1.5 R 4.5 v imp 5.4 ρ r R 1.5 R 4.5 v imp 6.9 α i f 1.5 ,
(1)
where Yno-α is defined as the DT neutron yield in the absence of alpha heating. Mimp is the mass inside the ablation front at peak velocity and ρr is the areal density in the absence of alpha heating of the combined DT and remaining ablator at minimum volume. The model is cast in terms of Yno-α, to avoid the complication of the power law dependencies increasing with increasing alpha-heating.18,19 The middle expression assumes self-similarity in imploding shell aspect ratio such that M scales as R3. The final expression assumes ρr/R ∼ vimpif, where αif is the in-flight adiabat, defined as ratio of the mass-averaged DT fuel pressure to Fermi pressure20 at peak velocity. It is based on an average sensitivity from 1D simulations and analytic derivations,19 for which the power law dependencies on vimp and αif vary by ≈30%.

We do not need to dwell more on the exact Yno-α dependencies since we are ultimately interested in scaling and extrapolation from current igniting capsules. However, it should be noted that the scaling with R and vimp according to Eq. (1) has been previously shown to describe21 well the NIF layered implosion scaling performance envelope in the low alpha heating regime. However, for CH ablators, while the expected inverse scaling of ρr and αif has been observed,22 the expected yield scaling with αif (as it drops below ≈ 2) has not been demonstrated,17 even for the best performing implosions. This has been ascribed to large hydroinstability growth of capsule surface perturbations. Thus, the near-term path forward favors αif > 2.5 implosions. By contrast, the assumed sensitivity of ρr to αif for higher adiabat, high density carbon (HDC) ablator implosions has not been observed,22 even when well shock-timed. This has been attributed to potential ablator-fuel mix for crystalline HDC23 that is a current active area of study24 and mitigation.25–27 

To include alpha heating28–30 leading to ignition, propagating burn and eventually yield or fuel burn-up saturation, we use a family of igniting hydroscaled31–36 1D clean capsule-only HYDRA37 simulations. They are based on a generic vimp ≈ 400 μm/ns HDC ablator design with Mfuel = 181 μg, initial ablator thickness ΔR = 77 μm and inner ablator radius R = 1.05 mm. Hydroscaling keeps vimp, αif and initial aspect ratio ΔR/R of the capsule fixed, such that the final energy density or pressure of the stagnated hotspot and shell is also held fixed, in the absence of alpha heating. In the case of an integrated (hohlraum and capsule) simulation, the x-ray drive power profiles are a fixed function of the ratio t/R, with the drive pulse length τ scaling as R, and with small corrections to account for material properties such as opacity that do not scale. This also ensures that the coast time, defined as time between laser turn off (the start of Tr dropping on Fig. 1) and minimum core volume or bangtime, that together with peak Tr, determines the important38–40 parameter of ablation pressure just before the rebound shock passes through the shell, also scales with R. In addition, for a given vimp, the capsule trajectory can be assumed to remain self-similar throughout since τ ∼ R/vimp ∼ R.

FIG. 1.

Drive radiation temperature Tr vs time from capsule-only simulation at R = 0.95 mm capsule scale. Dashed vertical line denotes the bangtime in the absence of alpha heating.

FIG. 1.

Drive radiation temperature Tr vs time from capsule-only simulation at R = 0.95 mm capsule scale. Dashed vertical line denotes the bangtime in the absence of alpha heating.

Close modal

In practice, we use capsule-only simulations that allow for a simplified, validated version of hydroscaling. First, the implosion at a given αif is simulated at the baseline R = 0.95 mm scale using the x-ray drive shown in Fig. 1, parametrized as an equivalent blackbody flux of temperature Tr. To ensure perfect hydroscaling, as soon as the implosion reaches peak velocity, all of the physical dimensions are scaled up by the same factor, and then the simulation is allowed to proceed until full burn completed.

Yields are then calculated as functions of scale R and αif (by varying the preheat level) for a fixed NIF relevant vimp ≈ 400 μm/ns. The preheat is added to the DT fuel 200 ps before peak vimp is reached, over a 100 ps duration, before the rescaling described above is applied. Preheat has been added in steps of 1.5 × 105 J/g when the DT fuel is at T ≈ 10 eV, thus raising the entropy Δs in steps of ≈0.015 GJ/g/keV. A published fit20 between DT entropy and adiabat is then used to convert entropy s to αif. One such series of simulations at αif = 3.1 with Δs = 0.015 GJ/g/keV is shown in Fig. 2 as a curve of yield vs initial inner capsule ablator radius R. It is chosen because it approximately bisects the two highest performing and igniting2,41,42 HDC shots N221204 and N230729 at R = 1.05 mm.

FIG. 2.

Solid curve is simulated hydroscaled 1D clean DT yield as vary initial capsule inner radius for a 3-shock C-based ablator design at a current NIF ignition-relevant in-flight adiabat = 3.1 and peak fuel implosion speed = 400 μm/ns. Filled squares are best performers N221204 and N230729 driven by 2.05 MJ laser energy that yielded 3.2 and 3.9 MJ yield and burn-up fraction between 4.3% and 5.3%. Gray curves are contours of calculated burn-up fraction for experimental conditions of 220 μg DT fuel mass and R = 1.05 mm. Also plotted as alternate x-axes are drive laser energy EL scaling as R3 normalized to ≈2 MJ used for experiments at R = 1.05 mm (top), and calculated total stagnated areal density ρRstag (bottom lowest) in the absence of alpha heating scaling as R. Dashed line shows expected R4 saturated yield scaling for ρRstag ≪ 6 g/cm2.

FIG. 2.

Solid curve is simulated hydroscaled 1D clean DT yield as vary initial capsule inner radius for a 3-shock C-based ablator design at a current NIF ignition-relevant in-flight adiabat = 3.1 and peak fuel implosion speed = 400 μm/ns. Filled squares are best performers N221204 and N230729 driven by 2.05 MJ laser energy that yielded 3.2 and 3.9 MJ yield and burn-up fraction between 4.3% and 5.3%. Gray curves are contours of calculated burn-up fraction for experimental conditions of 220 μg DT fuel mass and R = 1.05 mm. Also plotted as alternate x-axes are drive laser energy EL scaling as R3 normalized to ≈2 MJ used for experiments at R = 1.05 mm (top), and calculated total stagnated areal density ρRstag (bottom lowest) in the absence of alpha heating scaling as R. Dashed line shows expected R4 saturated yield scaling for ρRstag ≪ 6 g/cm2.

Close modal

Effectively, we have normalized a 1D hydroscaling curve to the best performing implosions. Since, as we will show later, the curves are self-similar on the ignition cliff with changes in in-flight adiabat equivalent to just a multiplicative factor in scale, the exact choice of αif is not critical. The overlaid gray contours of burn-up fraction scale as mass of DT fuel Mfuel ∼ R3, where Mfuel ≈ 220 μg for the two data points. Also shown as alternate x axes are the hydroscaled values of laser energy EL ∼ R2τ ∼ R3 and ρr ∼ R, normalized to the experimental conditions, EL ≈ 2 MJ and ρr ≈ 1.25 g/cm2 at R = 1.05 mm. The justification for the ρr estimate in the absence of alpha heating is included in  Appendix A. The dashed curve shows the yield reaching the anticipated scaling Ymax ∼ Mfuelϕ ≈ Mfuelρr ∼ R4 for ρr ≪ 6 g/cm2, for the expected32 burn-up fraction ϕ = ρr/(6 + ρr) ≈ 21% at ρr = 1.6 g/cm2.

The R3 laser energy scaling is for a fixed hohlraum-to-capsule radius ratio Rh/R and hohlraum-to-capsule coupling efficiency. It also assumes, conservatively for the moment, that increases in hohlraum wall albedo with time43 due to the diffusive nature of the Marshak wave (and hence decreasing fractional wall losses with scale) is compensated by an accompanying increased loss from laser backscatter due to correspondingly larger coronal density scale-lengths increasing with hohlraum scale. Similarly, the hohlraum cooling rate for realistic laser drives that turn off before peak vimp is assumed to scale44 with peak drive duration (i.e., with stored energy/area in hohlraum walls) and, hence, with Rh,.

More generally, we will include the coupling efficiency η between hohlraum and capsule as follows:
R 3 η E L .
(2)
Equation (2) provides a measure of how much the capsule scale can be increased, and therefore the yield according to Eq. (1), by improving the efficiency of the hohlraum or capsule implosion. For instance, the hohlraum losses can be reduced by using a smaller wall area or a proportionately smaller laser entrance hole (LEH) area. Similarly, the ablator choice can be changed to improve the capsule implosion efficiency. A third option, a key feature of the current igniting design,17 increases the ratio of capsule to hohlraum radius for a given hohlraum geometry. For this scheme, the required EL scales desirably more slowly, as ∼τ ∼ R in the approximation x-ray losses to the capsule are small compared to losses to the hohlraum wall and out of the LEHs. Hence, for fixed hohlraum scale, the capsule absorbed energy can increase almost as fast as R3. However, this is at the expense of quickly reduced drive symmetry from more capsule ablator plasma filling, impairing inner laser beam propagation, and more imprinting of mid mode drive asymmetry from laser spots being closer to capsule.45 

While the current approach uses a strictly 1D scaling, most 2D and 3D degradations can be easily incorporated into the 1D formalism.46 Low mode drive asymmetries (principally mode 1 and 2) hinder the full conversion of peak radial kinetic energy to stagnated internal energy. This leads to residual kinetic energy (RKE)47–49 by minimum radius, and a reduced50 ρr and vimp. The effect can be included as either a reduction in efficiency51 η in Eq. (2), or directly as a reduction in yield and other plasma parameters (pressure, internal energy, etc.) via an analytic piston model.52 Ablator mixing into the colder fuel53 due to hydrodynamic instability or molecular diffusion increases the fuel adiabat54 and, hence, can also reduce ρr. Mitigating such mix25,27 can be viewed as simply decreasing αif and thus increasing ρr uniformly (hence a 1D effect), as will be discussed in Sec. III. By contrast, if penetration and/or mixing of the ablator into the hotspot55–59 is significant enough to impede ignition by radiative cooling, it is assumed that such consequential hotspot mix should be mitigated first before pursuing other 1D improvements. This is because we are only considering the >1 MJ yield regime. The justification for approximating 2D and 3D perturbations as just a shift in the hydroscale curves has been borne out by comparing 1D, 2D and 3D simulation yields as vary capsule absorbed energy (effectively, as a function of R3).60 

This extrapolation methodology using 1D scaling allows us to easily renormalize our projections based on any future improved yields. The first set of approaches for improving yield include increasing ρr or reducing RKE, αif, initial DT gas-fill or ablator-fuel mix, as discussed in Sec. III.

There are multiple routes to improving confinement and compression. We discuss the expected performance gains using the hydroscaled formalism discussed above for four distinct paths, with the understanding that some of them have, in general, multiple possible implementations. These are implosions with thicker ablators, reduced in-flight adiabat, reduced initial gas-fill, and reduced ablator-fuel mix.

One path to higher ρR and hence higher yield according to Eq. (1) is to increase the initial ablator thickness ΔR. The principal trade-off41,61 for a given inner capsule radius R and peak Tr is ΔR vs peak fuel velocity vimp. NIF 3-shock HDC designs have progressed from delivering 1.3 to 4 MJ yield, thereby fully igniting, by increasing ΔR by 6 μm (≈8%) and driving with 6% more laser energy (2.05 vs 1.91 MJ). The extra laser energy was used to extend the peak power of the pulse to accomodate thicker capsules imploding more slowly. The inferred ρr in the absence of alpha heating was ≈10% larger, so consistent with the predicted ≈3× yield increase as shown in Fig. 3, by jumping from a ρr = 1.15 g/cm2 to a 1.25 g/cm2 hydroscaling curve on the ignition cliff.

FIG. 3.

Repeat of Fig. 2 adding hydroscaled simulations for ≈10% lower (thin solid curve with αif = 3.39) and ≈10% higher (dashed curve with αif = 2.8) ρr obtained by varying preheat level. Lower filled squares are prior experiments N21080862 and N221107 that used 7% thinner ablator and 7% less laser energy (1.91 MJ) and gave 1.1–1.3 MJ yield with 10% lower ρr than N221204 and N230729 at >3 MJ yield. Open squares are extrapolated predictions for 5% and 12% thicker ablator driven with 7% more laser energy (2.2 MJ).

FIG. 3.

Repeat of Fig. 2 adding hydroscaled simulations for ≈10% lower (thin solid curve with αif = 3.39) and ≈10% higher (dashed curve with αif = 2.8) ρr obtained by varying preheat level. Lower filled squares are prior experiments N21080862 and N221107 that used 7% thinner ablator and 7% less laser energy (1.91 MJ) and gave 1.1–1.3 MJ yield with 10% lower ρr than N221204 and N230729 at >3 MJ yield. Open squares are extrapolated predictions for 5% and 12% thicker ablator driven with 7% more laser energy (2.2 MJ).

Close modal

However, even at fixed peak power PL, further thickening ablators might improve yield as per a thick shell model19 validated by numerical simulations, the inverse scaling of vimp with ΔR is weak, ∼1/ΔR0.4. This is due to two beneficial effects. First, a thicker capsule absorbs more energy since its ablation front remains at a larger radius for longer times. Second, as further discussed in a later section, the less efficient buried doped layer used for x-ray preheat shielding is ablated later in the implosion trajectory. This occurs when the capsule surface area is smaller and, hence, represents a smaller contribution to the ablative drive when more inefficient. The same thick shell19 model validated by simulations showed that ρr ∼ ΔR1.15vimp0.76, hence increasing as ΔR0.85 by substituting for vimp from above. Upon ignition, higher ρr is desirable to reduce the rate of fuel expansion to keep the burnrate higher for longer, thereby further increasing yield. However, we must also respect the constraint that theory validated by simulations51 predict ignition in 1D requires preserving a minimum ρrvimp2. Substituting for vimp from above again, the ignition threshold ρrvimp2 ∼ ΔR0.85/ΔR0.8, almost independent of ΔR. So, a practical question is: given a capsule size and Tr, what is the maximum increase in ΔR that still allows ignition as vimp decreases? To answer this, experiments at the NIF are in progress63 using thicker capsules and a further 7% more energy from NIF, up to 2.2 MJ, 440 TW. This plan is overlaid pictorially on Fig. 2, where unfilled symbols are projections of expected performance. In addition, in-flight x-ray radiography64 is assessing mitigation techniques for RKE from time-dependent drive asymmetry, to further reduce the vimp required for ignition.

The discussion so far assumed the drive pulse is extended to maintain similar coast time as ΔR increased, by increasing EL at fixed PL. Another related question is: How much further could ΔR be increased at fixed EL and still achieve ignition, which also necessitates decreasing PL? This is closely related to non-hydroscaled strategies discussed in later sections, so the analysis is deferred to  Appendix C.

As shown on Eq. (1), reducing the in-flight adiabat in 1D is predicted to also increase yield, by allowing more convergence, hence larger areal density ρr for a given remaining mass, if the impacts of hydroinstability that grows with convergence ratio can be mitigated. The calculated hydroscaled curves on Fig. 4 at two adiabats differing by ≈10% are conveniently close to self-similar on the ignition cliff. Specifically, the same yield can be attained in 1D at lower adiabat using a smaller capsule requiring less drive energy and power, as shown by combining Eqs. (1) and (2),
Y n o α η E L α i f 1.5 v imp 6.9 .
(3)
FIG. 4.

Repeat of Fig. 3 adding hydroscaled simulations for ≈10% lower in-flight adiabat (dashed curve) to illustrate trade-off between R and in-flight adiabat for a given yield. Open square is extrapolated prediction for 10% lower αif achieved by, for example, optimizing shock strength and timing.

FIG. 4.

Repeat of Fig. 3 adding hydroscaled simulations for ≈10% lower in-flight adiabat (dashed curve) to illustrate trade-off between R and in-flight adiabat for a given yield. Open square is extrapolated prediction for 10% lower αif achieved by, for example, optimizing shock strength and timing.

Close modal

Figure 4 shows that constant yield contours at fixed vimp trade off R with αif1/2. We note that Eq. (1) differs by showing R ∼ αif1/3, which reinforces the point that yield scalings without alpha heating should only be used as a guide for dependencies. When including alpha heating, a better metric is the yield amplification (Yamp) vs the ignition metric ITFX in the absence of alpha heating. ITFX is a figure of merit based on fitting simulation sensitivities that gives the distance relative to the ignition cliff of any design based on the product Yield x ρrfuel2.1. Yamp curves vs ITFX exhibit steeper slopes16 as αif decreases, which could explain the discrepancy between scalings of R vs αif with and without alpha heating.

Using the same 2.05 MJ NIF energy and R = 1.05 mm scale as the igniting shots, the open square on Fig. 4 shows the predicted yield increase, doubling to 8 MJ for 10% lower adiabat.

One demonstrated path65 to lowering the mass-averaged fuel adiabat is by optimizing shock merge depths to be near the DT fuel/gas interface,66 and reducing the rise-rate to peak laser power. This is currently being pursued with the 3-Shock HDC design, first at 1.9 MJ laser energy, and then potentially at higher energy. Reductions of 10% in adiabat seem feasible. The main issue is whether increased sensitivity to 2D asymmetries and hydroinstability growth from higher convergence could thwart ignition. Indeed, experiments using a low adiabat 4-shock CH design (αif < 1.8) that exhibit higher convergence have not shown increased yields,17,67 partially attributable to hydroinstability growth of features such as the capsule support tent at its liftoff location68 and/or ablator imperfections limiting the maximum vimp that is tolerable. For HDC, compression had not gone up22 until recently at a given vimp, an example of which is discussed in a later section.

There is another path to improving convergence. The igniting designs have the first 2 shocks merge ≈10 μm before the DT fuel/gas interface, increasing the adiabat and hence temperature of that inner most DT fuel. This enhances the mass ablated69 into the hotspot during deceleration by thermal conduction after PdV heating. More hotspot mass Mhs at a given stagnated pressure translates to increased hotspot radius Rhs and hence a reduction in ρrfuel. By contrast, reducing the initial cryogenic temperature of the layered capsule further below the DT triple point20 should lead to less Mhs and, hence, smaller Rhs and higher ρrfuel at minimum volume. This should provide more inertia to fuel expansion and a more sustained high burnrate after ignition. Prior attempts on non-igniting designs have not improved yields. A repeat test, i.e., reducing the initial DT hotspot mass by up to 30% (known as “full quench”) is planned on an existing igniting design. Given that Mhs at minimum volume is composed of about 80% ablated inner fuel, one would expect “full quench” to reduce Mhs and Rhs by only about 6% and 2% for fixed ρhs, respectively. However, simulations predict that ρhs also increases some at full quench, so Rhs should become even smaller. The increase in ρr ∼ Mfuel/Rhs2 is ≈10%, and thus, we expect the yield to again increase by ≈2× according to Fig. 3. If both lower adiabat and gas fill techniques were successful at doubling yields, we would probably not get a full 4x improvement in yield, as we move beyond the ignition cliff and approach the maximum burn-up fraction.

It is instructive at this point to compare the measured burn-up fraction ϕ vs a 1D analytic expression that is a function of the burning DT thermal ion temperature Ti, the fuel density ρfuel and the stagnated spatial scale r. For small ϕ, it is given1 by the product of the burn rate ∼ρfuelTin and the confinement time ∼r/v, the latter set by adiabatic cooling and density dropping as the fuel expands at speed v ∼ T. Since simulations for implosions with strong alpha heating predict the fuel and stagnated ablator are of similar density by peak burn,16 we can replace ρfuel with simply ρ. We assume the burn is truncated after enough spherical adiabatic expansion. Specifically, we mark the end of burn when the pressure ∼1/r5 is reduced by 2x, so when r increases by 15%. Using a fit to reactivity70 valid between 2 < Ti < 30 keV, we arrive at ϕ = 1.0 × 10−5 ρ r T i 7 / T i 0.2 0.5 with Ti in keV and ρr in g/cm2 (see  Appendix A for details). The hotspot temperature Ti in the formula above uses the average value inferred from Doppler broadened71 DD neutron spectra measured from 2 to 3 different lines-of-sight (LoS). The DD spectrum is chosen over the DT spectrum because it does not show anomalous shifts72 and it is less susceptible (by a factor of 1/5th) to extra broadening by non-thermal bulk kinetic or turbulent flows.73 The minimum DD Ti value would more accurately represent the thermal component. In practice, the standard deviation among all detectors is usually within the error bar (5%) of the average value. An understanding of space and time-resolved Ti would be useful for a better comparison to expected burn-up fractions. For example, accurate measurements of the width and shift of the backscattered DT neutron edge74 at ≈3.5 MeV could isolate the burn wave temperature in the dense fuel, that is expected to be lower than the average Ti. Though difficult, one could also develop time-resolved Ti measurements.75 

The data vs model burn-up fractions are plotted on Fig. 5 for HDC-based indirect-drive layered implosions at NIF with ϕ > 0.0001. The model includes a small correction for depletion76 of fusion products by plotting ϕ/(1 + ϕ). The ρr's with and without alpha heating are evaluated according to  Appendix A based on the measured ratio (DSR) of 10–12 MeV scattered to 13–15 MeV unscattered DT neutrons, corrected for the remaining ablator contribution and, in the no alpha case, for the effects of expansion during burn. As expected,29 the measured burn-up fractions for lower yields fall well below the analytic model predictions that assume all the fuel is burning (defined as burning at 1% or more of the peak burn rate). At the highest yields and burn-up fractions, the data are approaching the model using the smaller ρr values that account for alpha heating induced expansion, that also fits the simulations better (see Fig. 11). However, even the highest data lie 2× below the model. More detailed burn-up fraction models are worth developing adding in non-ideal effects. For example, one potential limiter to ϕ is non-uniformities in ρr, that is thin spots or aneurysms77 expanding faster, for which a simple correction is to use the smaller angular weighted harmonic mean78 ρr, outside the scope of this paper. At the same time, the maximum burn-up fraction achievable with implosions at the current scale is clearly an important question to explore experimentally. This issue of thin spots degrading confinement time is being actively pursued by measuring and attempting to reduce time-dependent drive asymmetries, and thus ρr non-uniformities for the current igniting designs.

FIG. 5.

Measured vs analytic burn-up fraction using measured DSR (open circles) and DSR corrected for Yamp according to Eq. (A1) (solid circles) for HDC-based indirectly-driven DT layered shots at NIF above ϕ = 0.0001. Solid line represents x = y.

FIG. 5.

Measured vs analytic burn-up fraction using measured DSR (open circles) and DSR corrected for Yamp according to Eq. (A1) (solid circles) for HDC-based indirectly-driven DT layered shots at NIF above ϕ = 0.0001. Solid line represents x = y.

Close modal
FIG. 6.

Repeat of Fig. 3 with hydroscaled simulations for ≈10% lower (thin solid curve with αif = 3.39) and ≈10% higher (dashed curve with αif = 2.8) ρr by varying preheat level. Open square is extrapolated prediction for a 20% higher ρr that was demonstrated at subscale for the ramped SQ-n drive.

FIG. 6.

Repeat of Fig. 3 with hydroscaled simulations for ≈10% lower (thin solid curve with αif = 3.39) and ≈10% higher (dashed curve with αif = 2.8) ρr by varying preheat level. Open square is extrapolated prediction for a 20% higher ρr that was demonstrated at subscale for the ramped SQ-n drive.

Close modal

ϕ may also be eventually limited by ablator mix into the outer fuel regions. Simulations show that ablator can mix into the outer regions of DT fuel in-flight due to RM and RT growth of roughness,60 microstructure,23 and/or voids54 at or near doped/undoped and undoped/fuel interfaces. X ray preheated ablator mixed into colder DT fuel can heat and thus decompress the fuel, reducing ρr at bangtime. Additionally, ablator mix reduces the fuel burn rate and burn-up fraction by increasing the radiative and conduction losses, and by diluting the local fuel density if atomically mixed. There are ongoing efforts using monochromatic radiography24 for measuring the mixing extent by peak implosion velocity. In addition, we are planning to improve gamma imaging capabilities79 such that comparisons80,81 of DT neutron images with neutron mediated C gamma images can provide more accurate information on the mixed zone of ablator and fuel at peak burn. The ratio of reaction-in flight DT neutrons above 17 MeV (from knock-on D and T) to downscattered neutrons is also a promising technique for inferring the level and morphology of ablator-fuel mix.82 

Meanwhile, a new design, denoted SQ-n, seeks to reduce any ablator-fuel mix and improve ρr in HDC based implosions.83 Richtmyer–Meshkov (RM) growth of any perturbations at the ablator fuel interface after first shock passage is replaced by stable Rayleigh Taylor (RT) oscillations,25 by using a ramped drive promoting continuous acceleration instead of the usual 2 successive shocks. In addition, the inner undoped layer of a typical HDC target (Fig. 3) that leads to a classically unstable inner undoped/doped interface layer, has been eliminated, thus trading reduced instability growth for possibly larger radiation losses due to mixing of high-Z dopant with the fuel. A velocity interferometer system for any reflector (VISAR)84 measuring the speed of the first shock as traverses a surrogate D2 filled capsule,85,86 and ablator-fuel interface tracking by high magnification streaked x-ray radiography,87 both confirm the transition from uniform to accelerating shock and particle speeds. Such layered SQ-n implosions at 80% of full-scale have shown27 an ∼30% increase in ρr at a similar in-flight adiabat, vimp and coast time as similar 80% ignition-scale 3-shock HDC implosions. Combined with an observed reduction in W dopant emission at stagnation time, this suggests substantial ablator-fuel mix has been mitigated. Optimization of the ramped drive and drive symmetry for 1.9 MJ full-scale tests (R = 1.05 mm) for comparison to the 3-shock N210808 design has now begun.

Figure 6 shows an expected ≈6x increase in yield if a 20%–25% increase in ρr persists, all else equal. If successful, SQ-n designs could further explore the benefits of increased ablator thickness, laser energy, and reduced initial hotspot density as described in Secs. III A–III C.

Improved efficiency designs also have several distinct paths. We discuss the projected performance and efficiency gains for three ongoing approaches: reducing losses in the hohlraum, increasing the drive Tr and hence capsule ablation pressure, and optimizing the ablator efficiency.

We begin with the usual indirect-drive equation balancing sources and sinks,43 as shown in Eq. (4). The hohlraum flux ∼Tr4 reached for a given peak laser power PL is approximately inversely proportional to the combination of peak power areas of hohlraum wall (Ah), LEH (ALEH), and capsule ablation surface (Ac) as
η x P L T r 4 1 α h A h + A LEH + A c 1 α c ,
(4)
where ηx is the conversion efficiency from laser to x-ray power, and αh and αc are the hohlraum wall and capsule albedos88 that are weak but increasing functions of Tr and time, as discussed in later sections. Typically, for NIF-scale cylindrical hohlraum designs at peak power, αh ≈ 0.85, αc ≈ 0.3 and ALEH/Ah and Ac/Ah are ≈5.5% and 2.5%, respectively. Thus, the relative sink contributions on the right side of Eq. (4) are in the approximate ratio 0.65:0.25:0.1.

The first shot, N210808, that met the Lawson criterion of reaching the ignition cliff by doubling the core temperature and raising the yield 6× to >1 MJ level, had reduced the ALEH by 27%. Thus, the losses according to Eq. (4) were reduced by ≈8%. This allowed the PL to be reduced by ≈8% according to Eq. (4) to maintain similar x-ray flux Tr4. Hence, the peak power portion could be lengthened by ≈8% (≈300 ps), within the constraint of fixed 1.9 MJ laser energy at the time. The outcome using similar size capsules as prior shots (but with significantly reduced surface and volume imperfections) was a reduction in coast time, and an increase in the key metrics of peak implosion velocity [see Eq. (1)] and ablation pressure near peak velocity.40 Further gains using such high quality capsules are being pursued by reducing ALEH a further 25%, and reducing the cylindrical hohlraum diameter and hence Ah by 3% to increase hohlraum efficiency ηh by ≈+9%. If successful at drive symmetry control, this could be used to drive even thicker capsules to higher ρr and hence predicted yield as in Sec. III A. Such a smaller LEH could also be fielded without reducing the hohlraum radius to ease drive symmetry control, bringing ηh only down to +6%. Alternatively, one could trade the efficiency gains of a smaller LEH to increase the hohlraum and capsule diameter (and hence ρr all else equal) by 5%, and increase EL by an available +7%, thus moving up the hydroscale curve to R = 1.1 mm as shown on Fig. 7.

FIG. 7.

Repeat of Fig. 3 adding open square and open diamond for extrapolation to 5% larger capsule driven by 25% smaller LEH, 5% larger Rh cylindrical hohlraum, and for 15% more efficient hohlraum (e.g., frustraum with 20% lower wall area), respectively.

FIG. 7.

Repeat of Fig. 3 adding open square and open diamond for extrapolation to 5% larger capsule driven by 25% smaller LEH, 5% larger Rh cylindrical hohlraum, and for 15% more efficient hohlraum (e.g., frustraum with 20% lower wall area), respectively.

Close modal

A second path is modifying the hohlraum geometry. As an example being currently evaluated, we shall use the dual frustum-shaped hohlraum44,89 (denoted “frustraum”) as shown in Fig. 7. This new geometry reduces Ah compared to the cylindrical hohlraums used for igniting shots (by 20% for the current design), while increasing the initial minimum clearance between capsule surface and hohlraum wall. The LEH area is kept fixed but subtends a larger solid angle since the frustraum, approximating a sphere, is shorter. The overall expected efficiency improvement according to Eq. (3) is ηh ≈ +10%. This includes a negative correction to account for less energy stored in the lower Ah wall, that requires a shorter coast time (longer laser drive) to compensate for faster hohlraum cooling.44,90 That 10% calculated and demonstrated91 efficiency gain and increased clearance is being used to drive a 5% larger capsule (R = 1.1 mm) at similar vimp and αif. This requires only 6% more x-ray fluence for sustaining a 5% longer drive and 1% higher capsule losses according to Eq. (4). Thus, in principle, less laser energy will be required. The projected 1D yield increase over N230729 is 2× as shown in Fig. 7, as one moves up the hydroscaled curve at fixed vimp and αif for 5% higher R and ρr.

For both endeavors, cylindrical and frustum-shaped hohlraums, the main challenge is preserving sufficient drive symmetry control through the pulse, in the face of more plasma filling due to the smaller hohlraum volumes, smaller LEHs and in the latter case, also larger capsules. Indeed, given the proportionately greater ablator plasma filling from having a larger ratio of the capsule-to-hohlraum volume, the optimum initial hohlraum gas-fill density is also being revisited. Other proposed hohlraum design modifications for reducing hohlraum wall area while maintaining drive symmetry include LEH shields92,93 and foam-filled hohlraums.93 The symmetry control challenges are further discussed in Sec. V D.

A second potential route to higher efficiency is by increasing the ablation pressure at the capsule through using higher Tr drive.94,95 To evaluate the potential gains, we use the 1D version of the Generalized Lawson Criterion (GLC) metric, closely related to the Ignition Threshold Factor (ITF). GLC and ITF are single figures of merit that give the distance relative to the ignition cliff of any design based on the product of power laws of independent input values of an implosion. They are based on fitting simulation sensitivities, can be tracked back to analytic theory96 and are given as follows:16 
GLC ITF 0.54 M imp v imp 8.0 P abl 0.77 / α i f 2.0 0.54 .
(5)
Equation (5) is linked to Eq. (1) upon substitution for ρr dependencies on in-flight variables vimp, αif, and Pabl. The latter is defined as the ablation pressure at δt = Δrif/cs ≈ 0.5 ns before peak velocity, typically the sound crossing time in the capsule of in-flight thickness Δrif. This is typically near the maximum Tr and Pabl in high performing implosions that have 1 ns or less coast times. At peak power when ablating partially ionized and reemitting doped ablator, simulations show Pabl scales as Tr3.5(1 – αc) ∼ Tr3.3. The strategy is then to significantly increase Tr4 at fixed PL by decreasing both Ah and Ac to preserve sufficient drive symmetry control, as shown pictorially in Fig. 8. To understand tradeoffs, it is useful to rewrite Eq. (5) as
ITF R 2 Δ R M imp / M 0 v imp 8.0 P abl 0.77 ,
(6)
where we have dropped the αif term and the initial ablator density as assumed fixed for the moment. A further constraint between Mimp/M0, vimp and Pabl is provided by the indirect-drive Rocket equation,
v imp P abl m ̇ l n M 0 M imp Σ Z + 1 A T r M 0 M imp T r μ M 0 M imp T r ,
(7)
where Pabl/(dm/dt) equates to the plasma exhaust velocity ∼ Σ ( Z + 1 T r / A for ablated plasma thermal temperatures assumed ∼Tr. We have also introduced the mean atomic weight per particle (electrons and ions) term μ = A/Σ(Z + 1) in preparation for comparing ablators in a later section. Σ(Z +1) is the sum of ions and free electron over each element of charge state Z comprising the ablator. The middle expression contains a convenient power law approximation22 to the ln term, valid for the ignition-relevant indirect-drive range 5 < M0/Mimp < 20. The last expression assumes fixed fractional mass remaining Mimp/M0, to keep the threat of feedthrough of hydrodynamic instabilities or preheat low. Finally, we need to substitute for ΔR in Eq. (6). Since most of the capsule mass M0 is ablated in indirect-drive, at a rate97  m ̇μTr3(1 − αc) over a duration ∼R/vimp, we can approximate for the ablated mass Ma ∼ M0 as follows:
M a R 2 M 0 R 2 Δ R μ T r 3 1 α c R v imp μ R T r 2.3 ,
(8)
where the last expression substitutes for vimp using Eq. (7) and for (1 – αc) ∼ Tr−0.2 from above. Substituting for ΔR, vimp and Pabl in Eq. (6) yields the trade-off R ∼ 1/Tr3 at a given value of μ and ITF. Since the required peak power duration τpeak scales as R/vimp; hence, as ∼1/Tr3.5 for a given ITF, the efficiency advantage lies in the fact that a lower EL ∼ τpeak can be used.
FIG. 8.

Repeat of Fig. 3 adding hydroscaled curve for 4% higher Tr drive allowing for 12% smaller capsules (dashed-dot curve at same αif = 3.1) for given yield. Open square and diamond are predictions of NIF design performance at R = 0.91 and 1.05 mm driven at E = 1.8 MJ using cylindrical hohlraum, and 15% more efficient hohlraum (e.g., frustraum) driven at 2.2 MJ, respectively.

FIG. 8.

Repeat of Fig. 3 adding hydroscaled curve for 4% higher Tr drive allowing for 12% smaller capsules (dashed-dot curve at same αif = 3.1) for given yield. Open square and diamond are predictions of NIF design performance at R = 0.91 and 1.05 mm driven at E = 1.8 MJ using cylindrical hohlraum, and 15% more efficient hohlraum (e.g., frustraum) driven at 2.2 MJ, respectively.

Close modal

A current design uses a 25% lower Ah, and 18% higher ALEH to ease symmetry control, for driving a 30% smaller Ac. According to Eq. (4), for fixed PL ≈ 450 TW, this should lead to a 4% higher Tr and, hence, a 14% increase in energy efficiency. The optimum capsule initial aspect ratio ΔR/R is accordingly 9% larger according to Eq. (8). vimp should be 2% higher according to Eq. (7), and ρr/R ∼ (ΔR/R)1/3vimp0.48Pabl0.26 according to Eq. (12) should be 7.5% higher than hydroscaled. The higher mass ablation rate should also increase ablative stabilization of RT ablation front growth.

The dashed–dotted curve on Fig. 8 represents the approximate yield curve for a 4% higher Tr by just shifting the solid curve to 12% smaller R per the above derived scaling. This is a slight overestimate because ITF scales with yield amplification due to alpha heating (Yamp), while what is plotted on Fig. 8 is the Yα, a product of Yno-a and Yamp. Yno-a according to Eq. (1) and, hence, Yα will be 23% less, principally due to a 12% smaller capsule containing less fuel and stagnating to lower ρr. The predicted yield for the current R = 0.91 mm design is hence shown 23% below the dashed-dotted curve, but still predicted to ignite with target gain > 1 (yield of 2 MJ at EL = 1.8 MJ). If we successfully ignite at a smaller scale using EL below the current 2.2 MJ NIF capability, we unlock the potential to scale up to higher yields. The open diamond symbol shows a path to 15 MJ yield by using a higher efficiency frustraum with more laser energy (up to 2.2 MJ) to drive a 10% thicker version of the current R = 1.05 mm capsule to higher vimp and higher ρr.

We have reached ignition by driving W-doped HDC ablators of scale R = 1.05 mm at an intermediate αif ≈ 2.8, vimp ≈ 390 μm/ns and Mimp ∼0.5 mg. It is now worth revisiting if, by matching those 1D parameters, can we also ignite using other ablators that can provide higher efficiency by virtue of having a lower average Z, in particular Si-doped CH or Cu-doped Be.98 CH and Be designs have only been tested at lower and higher adiabat and at smaller scale. The choice of ablator and preheat shield dopant will affect the implosion dynamics and efficiency principally through differences in μ, ionization potentials IP and capsule albedo αc. The general form for Pabl that encompasses all three of these ablator-specific parameters is given by19 
P abl μ 0.5 T r 3.5 1 α c 1 + Σ IP / 1.5 Σ Z + 1 T r ,
(9)
where the denominator represents the relative loss of energy invested in ionization (in eV) vs expended in maintaining isothermal ablation, per particle, assuming Te = Tr in the ablated material. ΣIP is the sums of ionization potential energies from neutral to fully ionized for each element in the ablator. There is a further important connection between αc and μ. For example, for a given Tr, pure CH has a higher exhaust velocity vex P abl / m ̇ ∼ 1/ μ, by virtue of the higher Z/A of H. This leads to less ablated mass ∼μ and, hence, a smaller ablated optical depth and lower albedo αc than designs using a pure C ablator.

Table I shows the estimated metrics for CH, Be and B4C-based designs relative to C, for an undoped ablator at Tr ≈ 300 eV, where it is assumed that all low Z ablators are fully ionized.99 For comparing the undoped albedo of ablated CH vs C, we assume αc scales linearly with the mass of ablated C which itself scales as product of mass ablated ∼μ and mass fraction of C, hence ∼1/Σ(Z + 1). This linear approximation is justified in the low albedo limit (<0.3) of spherically expanding low Z ablators where the transport is not yet strongly diffusive. To compare absorption defined as (1 − αc) between C and CH, we have approximated αc as 2/Σ(Z + 1) such that αc = 2/7 for C and 2/9 for CH, based on simulations. Hence a CH ablator has less absorption and less ionization losses per particle than C given the presence of H. A lower Z Be ablator100 has similar μ to C. To be consistent with what has been inferred in planar ablation rate experiments,101 we estimate for Be a 50% lower undoped albedo, that combined with an ≈(4/6)2 lower ΣIP with Z + 1 = 5 gives pure Be an ≈30% higher Pabl at a given Tr than pure C. As would be expected, the intermediate Z B4C candidate ablator falls in between C and Be efficiency.

TABLE I.

Estimated % change in implosion parameters for various pure ablators relative to pure C at Tr = 300 eV.

Parameter CH Be B4C
Absorption fraction (1 – αc +10  +20  +10 
Exhaust velocity vex( T r / μ +8  −2  −2 
Ionization losses ∼ 1 + Σ IP 1.5 Σ Z + 1 T r  −5  −11  −5 
Ablation pressure Pablμ0.5ηcTr3.5  +7  +33  +18 
Mass ablation rate P abl v e xμηcTr3  −1  +35  +20 
Efficiency ηc =  1 α c 1 + Σ IP 1.5 Σ Z + 1 T r  +15  +31  +16 
Parameter CH Be B4C
Absorption fraction (1 – αc +10  +20  +10 
Exhaust velocity vex( T r / μ +8  −2  −2 
Ionization losses ∼ 1 + Σ IP 1.5 Σ Z + 1 T r  −5  −11  −5 
Ablation pressure Pablμ0.5ηcTr3.5  +7  +33  +18 
Mass ablation rate P abl v e xμηcTr3  −1  +35  +20 
Efficiency ηc =  1 α c 1 + Σ IP 1.5 Σ Z + 1 T r  +15  +31  +16 
To quantify relative efficiency, we calculate the x-ray flux needed to ensure a given kinetic energy (KE),
K E M imp v imp 2 T r M 0 μ R 3 T r 4 1 α c v imp 1 + Σ I P / 1.5 Σ Z + 1 T r ,
(10)
where we have substituted for Mimpvimp2 using the middle expression in Eq. (7), for M0 using Eq. (8) and included the IP loss term first introduced in Eq. (9). Thus, for fixed KE, vimp and scale R, the relative ablator efficiency ηc can be defined as
η c K E T r 4 1 α c 1 + Σ I P / 1.5 Z + 1 T r P abl v e x T r 4 .
(11)
The efficiency according to Eq. (11) is only indirectly dependent on μ, where the lower μ of CH leads to reduced initial and ablated mass and hence lower capsule albedo. In addition, since all non-hydrogen containing ablators have similar μ, they also have Pabl/Tr3.5 scaling with ηc according to Eq. (9). Table I shows that pure CH, Be and B4C should have 15, 31 and 16% higher ηc. There is also a small correction for rocket efficiency (defined as implosion KE/blow-off KE) that could be applied to Eq. (11). The nominal igniting C-based implosions have Mimp/M0 ≈ 0.1, on the low side of the peak in the rocket efficiency32 at Mimp/M0 ≈ 0.2. For the same Mimp, and vimp as discussed above, equivalent CH designs will have Mimp/M0 = 0.1/μ = 0.116, closer to the peak of the rocket efficiency adding ∼5% in relative efficiency for CH over C designs. Simulations with the full ignition relevant pulse shapes and buried dopant layers show that CH with 4% Si by atomic % exhibit a 16% higher ηc than C with 0.4% W. This is just a little higher (somewhat fortuitously) than the +15% undoped estimate listed in Table I.

Since the largest capsule microphysics uncertainty is likely to be the higher Z dopant albedo contribution, side-by-side CH(Si) and C(W) streaked x-ray burnthrough measurements to infer mass ablation rate101 and Pabl near Tr = 300 eV would be valuable. In addition, one could compare, at fixed hohlraum and capsule scale, relative peak KE vs laser energy and peak power by in-flight radiography.102 A revisit of a CH ablator design will also entail checking that hydroinstability growth of discontinuities such as at the support tent liftoff location can be mitigated by switching to the current higher igniting adiabat design αif (≈3), using a smaller tent contact area103,104 and larger capsules. The perturbation growth can be checked and compared by face-on gated x-ray radiography.105,106 The issue of drive symmetry control with longer pulses required of lower density ablators such as CH and Be is discussed in Sec. V C. Higher ηc can also be used to drive larger capsules and/or at lower Tr as discussed in Sec. V B.

To summarize, the relative efficiency of ablators in this model can be ascribed to differences in x-ray drive lost to ionization and x-ray reemission (i.e., albedo) that depend on the Z of the ablator, and for reemission, that also depends on the level of mass ablated that all else equal, scales as μ = A/Σ(Z + 1). Lower Z ablators are more efficient, but have only been tested in implosion configuration at either low107–109 or high adiabat35 and at less robust sub-mm scale. Hence, there is a strong case to revisit the use of lower Z ablators for larger capsule, intermediate adiabat igniting designs that can also mitigate ablation-front and ablator-fuel interface hydroinstability growth.

The peak power PL and energy EL of the NIF laser can be increased by adding final amplifiers and further improving optics quality.110 A prior study mapped out the hohlraum design space45 for a NIF upgraded capability. Here, we compare the projected yield capabilities for two proposed performance tracks: a hydroscale track where energy and power increases ≈30% and 20% to 2.6 MJ and 540 TW, and an energy track where energy can be increased to 3 MJ with power clamped at 450 TW. Extrapolated designs must first meet the ignition threshold according to Eq. (5), for which GLC =1 corresponds to a yield amplification of ≈30, as on shot N210808. We normalize to the best-performing shots N221204 and N230729 with an estimated GLC = 1.1, vimp = 375 μm/ns, Tr = 310 eV, and assume conservatively that the in-flight adiabat of about 3 is held fixed. To evaluate the ρr that determines burn-up fraction, we use the following scaling fit to 1D simulations:16 
ρ r M imp 1 / 3 v imp 0.48 P abl 0.26 / α i f 0.55 .
(12)

The hydroscale track by definition keeps peak Tr, αif, vimp, and Mimp/M0 fixed. In addition, the relative fraction of ablator mass remaining Mr and fuel mass Mfuel is kept fixed. It assumes that the required PL and EL scale as R2 and R3 since the hohlraum radius Rh is also assumed to scale as R. All ρr [according to Eq. (12)] and times also scale as R, while M0 and Mimp scale as R3. Equation (5) shows that GLC ∼ Mimp0.54 then scales favorably as R1.6. Hence, ignition achieved on N221204 automatically ensures ignition in 1D at larger scale, assuming no failure from non-hydroscaling physics. We can then assume robust ignition and simply read off the yields at (2.6/2)1/3 larger radii than current igniting capsules, as shown by the open symbols under the 2.6 MJ bracket on Fig. 9. Specifically, a 2.6 MJ cylindrical hohlraum and a dual frustum-shaped hohlraum at Rh and R = +10% relative to existing 2 MJ designs are predicted to reach fusion yields between 15 and 20 MJ, consistent with 1D simulations.

FIG. 9.

Repeat of Fig. 3 adding open squares and diamonds for extrapolations from 2 MJ, 435 TW to 2.6 MJ, 520 TW and to 3 MJ, 450 TW for implosions in cylindrical and 10% more efficient hohlraums (e.g., frustraum) as discussed in text and  Appendix B. Black and red symbols represent C and a 16% more efficient ablator (e.g., CH), respectively.

FIG. 9.

Repeat of Fig. 3 adding open squares and diamonds for extrapolations from 2 MJ, 435 TW to 2.6 MJ, 520 TW and to 3 MJ, 450 TW for implosions in cylindrical and 10% more efficient hohlraums (e.g., frustraum) as discussed in text and  Appendix B. Black and red symbols represent C and a 16% more efficient ablator (e.g., CH), respectively.

Close modal

Full radiation-hydrodynamics simulations comparing hohlraum conditions at full vs 0.78 scale of an early ignition design had also been done for NIF, when full laser energy was not yet available.111 Tr was 7% higher at full-scale due to the rising hohlraum wall albedo in time, while the coronal plasma ne and Te were slightly lower and higher respectively. Both deviations from strict hydroscaling should make larger scale even more promising, as further discussed in the next sections.

The 3 MJ option with a maximum 450 TW peak power, only slightly more than for the current 2 MJ designs (435 TW after removing few % backscatter losses), calls for deviating from hydroscaling. Most importantly, to maintain low coast times39,40 such that the laser turns off shortly before capsule deceleration for sustaining ablation pressure and maximizing compression,112 the capsule acceleration time τacc ∼ R/vimp should scale with peak power duration τpeak ∼ EL/450 TW.

One could first postulate fixed vimp such that R and hence Rh scale linearly with EL. This, as we will now show, turns out to be both too aggressive and too inefficient a strategy, but nicely illustrates some of the other physics considerations. First, the peak hohlraum temperature Tr which scales approximately as (PL/Rh2)1/4 would drop as 1/EL1/2, as would (Mr + Mfuel)/M0 according to Eq. (7). Second, the areal mass density ablated Ma/R2 = M0/R2 – (Mr + Mfuel)/R2 scaling as Tr3τpeak would also drop as 1/EL1/2. Based on the two constraints, the current igniting designs at EL = 2 MJ with 5% Mr/M0 and 5% Mfuel/M0 would transition at EL = 3 MJ to, for instance, 4% Mr/M0 and 4% Mfuel/M0, 20% less M0/R2, and 34% less Mr/R2 and Mfuel/R2. This means that there would be less fuel and remaining ablator areal density to mitigate hydroinstability feedthrough and/or x-ray fuel preheat. In addition, since we seek to maximize the saturated yield ∼Mfuelρr, the above scaling strategy provides no room to trade some inert Mr for fusionable Mfuel.

We, hence, adopt an intermediate strategy, kept simple to be representative but not unique, that scales R and Rh as EL1/2 while scaling the initial fuel thickness ΔRfuel ∼ Mfuel/R2 as EL, compared to EL1/3 for both when just hydroscaling. In addition, we choose an initial capsule mass M0 such that Mr/M0 remains ≈ constant at 5%–6% as current igniting designs, to keep the threat of feedthrough of hydrodynamic instabilities fixed.

In practice, we have improved the scaling to realistically increase yield prospects. First, we account for the laser energy of the earlier parts of the pulse increasing as ≈Rh2ΔRfuel to maintain fixed shock speeds and optimized shock timing, hence as EL2. This reduces the fraction of laser energy available for peak drive and hence τpeak. This could be viewed as an unfavorable scaling. However, a shorter τpeak translates to forcing vimp and hence Tr to increase for a given R so that τacc will still scale with τpeak, increasing the design's ignition metric according to Eq. (6). Second, we account for the increasing wall albedo in time. This reduces the contribution of wall losses in time relative to LEH losses such that Tr is now ∼(PLτpeak0.3/Rh2)1/3.7. The middle columns in Table II show the resultant scalings, with τpeak ∼ EL0.9/PL, and generalizing by including a hohlraum efficiency multiplier ηh. Tr and vimp drop 5(7)% and 9(11)% respectively, with(without) ηh = +10%, as R increases by 28(22)% while still keeping at least 5% Mr/M0. We note this near linear scaling of vimp with Tr is consistent with a prior scaling32 keeping the inflight aspect ratio fixed. This is not surprising since that is equivalent to keeping Mimp/M0 fixed. These designs satisfy the GLC multiplier ≈ 1 according to Eq. (5), and increase the projected yield, above even the hydroscaling curve, to 30(40) MJ as shown on Fig. 9 under the EL = 3 MJ bracketed region. The inherent assumption is that shot N230729 is already near the maximum yield for its value of ρr (discussed further in  Appendix A). Hence, future designs at larger ρr as given in Table II should reach the saturated yield regime even more easily for GLC > 1 due to the expected steepening16,113 of the ignition cliff with increasing ρr. So, to summarize, satisfying the GLC ignition threshold set by Eq. (5) allows for larger Mimp, that scales approximately as R4 since ΔRfuel ∼ R2, driven to lower vimp8 that scales approximately as 1/R4, and at lower Pabl0.77 ∼ Tr1.7 ∼1/R. Comparing Figs. 9 and 2, the non-hydroscaled design drives the same size capsule R = 1.3 mm with EL = 3 MJ instead of almost 4 MJ if just hydroscaled. This 25% savings in laser energy required is the difference between the capability of a NIF EYC upgrade vs building a new facility.

TABLE II.

Scalings and multipliers of hohlraum, capsule and implosion metrics as function of laser energy and hohlraum and capsule efficiencies for various design scenarios.

Parameter Hydroscale (HS) Fixed peak power Fixed peak power
C Design C Design CH Design
2.6 vs 2 MJ 3 vs 2 MJ 3 vs 1.72 MJ
520 vs 435 TW 450 vs 435 TW 420 vs 376 TW
Scaling Ratio Scaling Ratio Ratio Scaling (ηc =1.16) Ratio Ratio
Hohlraum efficiency ηh      1.1    1.1 
Ablator efficiency ηc              1.16  1.16 
Avg. particle atomic weight                 
μ = A/Σ(Z + 1)              0.84  0.84 
Peak power PL  EL2/3h1/3  1.19  EL0.1  1.04  1.04  cEL)0.2  1.12  1.12 
Peak power duration                 
τpeak ∼ ELm/PL                 
(m = 1, 0.9 for HS, fixed power)  hΕL)1/3  1.09  EL0.8  1.38  1.38  cEL)0.7  1.47  1.47 
Capsule inner radius R  hEL)1/3  1.09  hEL)0.5  1.22  1.28  cηhEL)0.5  1.32  1.38 
Hohlraum average radius Rh  hEL)1/3  1.09  EL0.5  1.22  1.22  cEL)0.5  1.32  1.38 
Hohlraum temperature                 
Tr ∼ (ηhPL/Rh2)1/4 for HS  Constant             
Tr ∼ (ηhPLτpeak0.3/Rh2)1/3.7      h/EL0.66)0.27  0.93  0.95  ηh0.27/(ηcEL)0.16  0.92  0.94 
x-ray fill factor ∼ Tr2τpeak/Rh  Constant  ηh0.54/EL0.06  0.98  1.03  ηh0.54/(ηcEL)0.12  0.94  0.99 
Peak implosion velocity                 
vimp ∼ R/τpeak  Constant  ηh0.5/EL0.3  0.89  0.93  ηh0.5/(ηcEL)0.2  0.90  0.94 
vimp ∼ √(R2Tr4τpeak/Mimp Constant  ηh0.21/EL0.29  0.89  0.91  ηh0.21/(ηcEL)0.22  0.89  0.90 
DT fuel thickness ΔRfuel  hEL)1/3  1.09  ηhEL  1.5  1.65  ηcηhEL  1.74  1.91 
Imploding mass (at vimp                
Mimp ∼ R2ΔRfueln                 
(n =1, 0.67, 0.5 for HS, C, CH)  ηhEL  1.3  hEL)1.67  2.0  2.3  ηh1.67cEL)1.5  2.30  2.65 
Peak ablation pressure                 
Pablμ0.5ηcTr3.5  Constant  h/EL0.66)0.95  0.78  0.85  μ0.5ηc0.44ηh0.95/EL0.56  0.78  0.85 
Stagnated areal density                 
ρr ∼ Mimp0.33vimp0.5Pabl0.26  hEL)1/3  1.09  ηh1.05EL0.24  1.10  1.22  μ0.13ηc0.51ηh1.05EL0.25  1.17  1.29 
Generalized Lawson Criterion                 
GLC ∼ (Mimpvimp8Pabl0.77)0.54  ηhEL  1.3  ηh3.46/EL0.65  0.77  1.07  μ0.21ηc0.13ηh3.46/EL0.29  0.87  1.21 
Max. yield Ymax ∼ Mfuelρr  hEL)4/3  1.42  ηh3.05EL2.24  2.48  3.32  μ0.13ηc2.51ηh3.05EL2.25  3.53  4.73 
Ymax/HS Ymax ∼ Ymax/R4  Constant  ηh1.05EL0.24  1.1  1.22  μ0.13ηc0.51ηh1.05EL0.25  1.17  1.29 
Parameter Hydroscale (HS) Fixed peak power Fixed peak power
C Design C Design CH Design
2.6 vs 2 MJ 3 vs 2 MJ 3 vs 1.72 MJ
520 vs 435 TW 450 vs 435 TW 420 vs 376 TW
Scaling Ratio Scaling Ratio Ratio Scaling (ηc =1.16) Ratio Ratio
Hohlraum efficiency ηh      1.1    1.1 
Ablator efficiency ηc              1.16  1.16 
Avg. particle atomic weight                 
μ = A/Σ(Z + 1)              0.84  0.84 
Peak power PL  EL2/3h1/3  1.19  EL0.1  1.04  1.04  cEL)0.2  1.12  1.12 
Peak power duration                 
τpeak ∼ ELm/PL                 
(m = 1, 0.9 for HS, fixed power)  hΕL)1/3  1.09  EL0.8  1.38  1.38  cEL)0.7  1.47  1.47 
Capsule inner radius R  hEL)1/3  1.09  hEL)0.5  1.22  1.28  cηhEL)0.5  1.32  1.38 
Hohlraum average radius Rh  hEL)1/3  1.09  EL0.5  1.22  1.22  cEL)0.5  1.32  1.38 
Hohlraum temperature                 
Tr ∼ (ηhPL/Rh2)1/4 for HS  Constant             
Tr ∼ (ηhPLτpeak0.3/Rh2)1/3.7      h/EL0.66)0.27  0.93  0.95  ηh0.27/(ηcEL)0.16  0.92  0.94 
x-ray fill factor ∼ Tr2τpeak/Rh  Constant  ηh0.54/EL0.06  0.98  1.03  ηh0.54/(ηcEL)0.12  0.94  0.99 
Peak implosion velocity                 
vimp ∼ R/τpeak  Constant  ηh0.5/EL0.3  0.89  0.93  ηh0.5/(ηcEL)0.2  0.90  0.94 
vimp ∼ √(R2Tr4τpeak/Mimp Constant  ηh0.21/EL0.29  0.89  0.91  ηh0.21/(ηcEL)0.22  0.89  0.90 
DT fuel thickness ΔRfuel  hEL)1/3  1.09  ηhEL  1.5  1.65  ηcηhEL  1.74  1.91 
Imploding mass (at vimp                
Mimp ∼ R2ΔRfueln                 
(n =1, 0.67, 0.5 for HS, C, CH)  ηhEL  1.3  hEL)1.67  2.0  2.3  ηh1.67cEL)1.5  2.30  2.65 
Peak ablation pressure                 
Pablμ0.5ηcTr3.5  Constant  h/EL0.66)0.95  0.78  0.85  μ0.5ηc0.44ηh0.95/EL0.56  0.78  0.85 
Stagnated areal density                 
ρr ∼ Mimp0.33vimp0.5Pabl0.26  hEL)1/3  1.09  ηh1.05EL0.24  1.10  1.22  μ0.13ηc0.51ηh1.05EL0.25  1.17  1.29 
Generalized Lawson Criterion                 
GLC ∼ (Mimpvimp8Pabl0.77)0.54  ηhEL  1.3  ηh3.46/EL0.65  0.77  1.07  μ0.21ηc0.13ηh3.46/EL0.29  0.87  1.21 
Max. yield Ymax ∼ Mfuelρr  hEL)4/3  1.42  ηh3.05EL2.24  2.48  3.32  μ0.13ηc2.51ηh3.05EL2.25  3.53  4.73 
Ymax/HS Ymax ∼ Ymax/R4  Constant  ηh1.05EL0.24  1.1  1.22  μ0.13ηc0.51ηh1.05EL0.25  1.17  1.29 

We have also included scalings in the three Table II right hand columns for an improved ablator efficiency ηc discussed in Sec. IV C. This allows R and Rh to further scale up as ηc1/2 and ΔRfuel as ηc. The red symbols on Fig. 9 denote the projected yields for ηc = +16% as inferred from simulations. According to Eq. (11), to maintain the same peak kinetic energy to ensure ignition, a higher ηc allows for a lower peak x-ray flux Tr4 and hence lower PL. Accordingly, the optimum PL for 3 MJ CH designs drops to 420 TW, allowing for longer peak power durations driving ≈ 8% larger capsules than for C designs. The larger capsule increases projected yields 40–60 MJ. A further advantage of operating at both lower PL and Tr is the expected reduction in hard (>1.8 keV) x-ray contribution. Hence, the required dopant level to maintain multi-keV x-ray shielding of the inner undoped regions is reduced, thus reducing the albedo losses of the capsule all else equal.

We also note the expected higher slope in Ymax ∼ Mfuelρr ∼ R2ΔRfuelρr ∼ R4.5, vs the hydroscaled R4 presented on Fig. 2. This explains why the fixed power extrapolated yields progressively rise faster than the hydroscale curve. Nevertheless, the dominant sensitivity to maximizing yield is the capsule radius. Further quantitative explanation of the derivations and self-consistency of the scalings in Table II, and how they are used to construct the projected yields, are given in  Appendix B.

There is another aspect to this non-hydroscaled strategy that could be key to further increasing ρr and GLC, and hence further improve design robustness and yields, not included in Table II scalings. Simulations19 increasing Mfuel by replacing ablator with fuel while keeping other parameters (R, Mimp, vimp, Tr, and αif) fixed show ρr, stagnation pressure and Yno-α increasing as ΔRfuel0.3, ΔRfuel0.2, and ΔRfuel0.5, respectively (see Fig. 10). This is in contrast to Eq. (12), where ρr is only dependent on Mimp. Equation (12) was originally adapted from direct-drive114 theory and simulations. where the majority of the mass remaining is DT fuel, to fit indirect-drive design simulations16 for which significant changes in Mfuel are also accompanied by significant changes for example in the adiabat. The simulations also show ρrfuel scaling close to linear with ΔRfuel (see Fig. 9). The increases in stagnated ρr and pressure are consistent with a concomitant decrease in the final hotspot radius with increasing ΔRfuel. These trends can be attributed to DT fuel reaching a higher peak density, allowing for both a more compact assembly, higher compressional pressure ρvimp2, and increase in areal density, compared to the x-ray preheated remaining ablator. Hence, the proposed strategy of increasing the Mfuel/Mr ratio as increase EL should further increase ρr, pressure, and yield, beyond the hydroscaled Mimp1/3 term of Eq. (11) that weights fuel and remaining ablator equally. Specifically, the additional sensitivity translates to ρr ∼ (ΔRfuel/R)0.32 ∼EL0.16. This represents a significant further 7% increase in ρr transitioning from EL= 2 to 3 MJ, relative to the +10% increase for ηh = 1 shown in Table II.

FIG. 10.

Stagnated ρr (large black symbols), ρrfuel (small black symbols), and pressure (red triangles) vs initial fuel thickness from 1D simulations with alpha heating turned off, for a 3-shock HDC design keeping R = 1.02 mm, Tr = 309 eV, vimp = 373 μm/ns, Mimp = 0.43 mg, and αif =2.5 fixed to within a few %. Dashed curves are power law fits.

FIG. 10.

Stagnated ρr (large black symbols), ρrfuel (small black symbols), and pressure (red triangles) vs initial fuel thickness from 1D simulations with alpha heating turned off, for a 3-shock HDC design keeping R = 1.02 mm, Tr = 309 eV, vimp = 373 μm/ns, Mimp = 0.43 mg, and αif =2.5 fixed to within a few %. Dashed curves are power law fits.

Close modal

1D simulations also suggest that the proposed increase in scaled fuel thickness ΔRfuel/R ∼ (ηhηcEL)0.5 up to +40% will not exceed the level of mass that can be stagnated, as set by the traversal time of the return shock115 by minimum volume or bangtime. One could test ΔRfuel scaling with current NIF implosions using intentionally dudded “THD” implosions,116 to remove the ambiguity of ignition leading to higher burn-up fraction and yield just from having more fuel, and the inferred ρr also being affected16 by ignition.

The major physics concern with efficiently scaling to higher laser energy is widely recognized to be keeping backscatter losses due to laser plasma instabilities (LPI) minimal. Since the main source of LPI at the low hohlraum gas-fill densities (0.3 mg/cc He) used for ignition designs has been Stimulated Brillouin Scatter (SBS),117 we first briefly review SBS scaling. The SBS convective gain for a given plasma species scales as the product of laser intensity IL, velocity gradient scale length Lv, and ratio of electron density to temperature.32 We will assume the laser spot size is scaled with RLEH to maintain proportional spatial clearance, combined with RLEH itself scaling with Rh. It then follows that the peak intensity is fixed for hydroscaling while drops as 1/Rh2 hence as 1/EL for fixed PL scaling. If the velocity gradient scale-lengths are assumed to scale with Rh, then the product ILLv will increase as EL1/3 for hydroscaling and drop as 1/EL1/2 for fixed PL scaling. The ratio of coronal plasma fill density to temperature in the laser channels should drop some for the hydroscaling case due to less thermal conduction losses as the laser spots get larger.32 So, we expect to zeroth order a < 10% increase in SBS gain even for the hydroscaling case where EL and Rh increase by 30% and 10%, respectively. Cross Beam Energy Transfer (CBET), which, is also a 3-wave process mediated by ion waves, might be expected to have similar weak scaling with EL, since the beam overlap lengths would also be directly proportional to spot size and hence Rh and Lv.

However, since plasma flows occur due to the presence of the LEHs, and the various plasma species (wall, fill, capsule ablator and LEH window coronal plasma) collide and possibly interpenetrate, the detailed gain regions for SBS and CBET are more complex and time-dependent. In addition, since controlling low mode drive symmetry may require more CBET, some of the cones will inherently accumulate higher intensity and be more susceptible to LPI losses. Experiments are being designed with relevant 10% larger hohlraums to first test SBS scaling on the inner cones that exhibit most of the current SBS. The effective peak power on the inner cones will be increased from the current 480 TW full NIF equivalent (FNE) limits by using CBET to reach and surpass the 540 TW peak power of a 2.6 MJ hydroscaled design. Such experiments must be conducted by progressively increasing effective peak power and energy to reduce the risk of laser optics damage from SBS back reflections.118 Since most of the SBS on the inner beams (those incident at 23.5° and 30° angle to hohlraum axis) occurs during the rise to and early peak power, the fact that current NIF can only provide just over 2 MJ currently does not impede studying that phase of the drive. Of course, by reversing the wavelength separation between cones, the potential appearance of significant SBS on outer cones at 540 TW FNE power and greater will also be checked. If the SBS remains low at higher intensities than by strictly hydroscaling laser spot sizes, smaller fractional LEH sizes could be planned in scaled-up designs, which could potentially increase x-ray drive power and yields. Simultaneously, SRS levels will also be monitored, especially from inner beams, as well as any associated hot electron production by monitoring hohlraum wall Bremsstrahlung using hard x-ray detectors.119,120

For the constant PL designs at even larger scale but lower drive Tr and IL, the extrapolation uncertainties are likely larger. Specifically, the coronal plasma will be cooler for lower IL, but also less dense because there will be less wall and capsule ablation due to the lower Tr. We can estimate the SBS gain scaling using a model32 that invokes pressure equilibrium between the laser channels heated by inverse Bremsstrahlung and cooled by conduction, and the regions outside the channels filled primarily by x-ray ablation of the hohlraum walls. The model (with the constraint vimp ∼ Tr0.9 to keep fixed in-flight aspect ratio and τpeak ∼ τacc that approximates current scaling) calculates that the SBS gain has a principal dependence ∼ηh0.4IL; hence, ∼ηh0.4/Rh2 ∼ ηh0.4/EL for the fixed PL case. The scaling with ηh results from a higher Tr leading to more wall ablation per unit area and, hence, higher fill density for a given size hohlraum. So even for a 10% increase in ηh, the lower IL and Tr associated with driving a larger hohlraum with fixed PL but more EL should reduce SBS gain.

It should also be noted that NIF indirect-drive 3-shock HDC implosion designs at 0.3 mg/cc fill have already been scaled up by ≈15% (from121 Rh = 5.75 to122 6.4–6.72 mm) and by 70% in EL (from 1.2 to 2.05 MJ) without observing significant changes in SBS fraction. This was done keeping laser spot size fixed, such that PL and IL increased by up to 20%, representing a less conservative approach than we have just described for a smaller fractional scale-up in EL to 3 MJ.

The ablator choice can also affect LPI losses. Assuming all else is equal, CH designs have lower hohlraum coronal plasma fill densities due to less ablated mass than HDC designs as explained in Sec. IV C, reducing the threat of SBS. Also the portion of inner beams passing directly through capsule ablated plasma will experience more stimulated ion wave damping and hence potentially less SBS gain in multispecies CH vs single species C.123 Be ablators,98 by contrast, have more mass ablation at a given Tr than C due to lower albedo as discussed earlier and should have less ion wave damping than CH, increasing the threat of SBS. This should be alleviated in Be designs by virtue of their lower Z being suited to driving even larger hohlraums at lower Tr and IL.

The second widely recognized issue with projecting to larger scale is maintaining sufficient drive symmetry control. We first consider the hydroscaling case. The main concern is the laser's Inverse Bremsstrahlung (IB) absorption length LIB ∼ Te3/2/Zne2 in the coronal plasmas potentially decreasing relative to the spatial scale length L ∼ Rh ∼ EL1/3. According to the same pressure balance model used for SBS scaling, and for hydroscaling, LIB/L ∼ EL0.16/Tr2.3, and only weakly dependent on ηh. Hence, we expect slightly better transmission at 30% higher EL for fixed Tr. Past experience on symmetry control scaling at NIF when increased Rh by 15% and EL by up to 70% showed that more CBET had to be used to transfer energy to the inner cones at larger scale. However, that can be at least partially attributed to simultaneously increasing R/Rh by ≈ 10% and decreasing RLEH/Rh by ≈20% to improve coupling efficiency at the expense of more pole-hot drive.

For the fixed PL case, one has to consider the consequences of peak Tr decreasing as EL−0.18 and ΔRfuel/Rh increasing as EL1/2. For the former, per the IB scaling for fixed PL and L ∼ EL1/2, we find LIB/L ∼1/EL0.16Tr2.9 ∼ EL0.36, hence again suggesting better transmission for higher EL at peak power conditions. However, this has to be tempered with the latter condition that the foot drive duration will increase by ≈15% to accommodate a proportionately longer first shock travel time, increasing hohlraum filling before reaching peak power. This will likely require revisiting the hohlraum fill gas density choice, and applying drive symmetry control techniques such as beam phasing124 to delay and counter effects of hohlraum high Z wall plasma ingress125–127 that lead to undesirable interception of inner beams and angular motion of laser spot deposition regions. Switching to CH designs presents both advantages and disadvanatges with respect to controlling drive symmetry. The CH ablated mass is reduced 20% relative to HDC designs at a given R and Tr, reducing plasma filling. However, CH designs require ≈60% longer foot drives τfoot for a given adiabat due to having a 3.3× less dense, 2.6× thicker ablator increasing first shock propagation time. This is largely mitigated because to drive a similar strength first shock in lower density CH only requires approximately 3× lower foot power Pfoot than for C. As a result, the level of coronal plasma filling by the end of the foot epoch ∼τfoot P foot is approximately constant.

We have presented quantitative assessments of various physics-motivated directions to increasing yields and target gain of igniting NIF indirect-drive implosions, beyond the 4 MJ, gain ≈ 1.7 best performance target of 2023. These include increasing compression and confinement time, improving hohlraum and capsule ablator efficiency and increasing laser energy and peak power. 1D hydroscaled simulations augmented by analytic 1D theory have been used to project yield improvements for each of these implosion optimization tracks, normalized to the best current performing 4 MJ shot. Several key tradeoffs emerged from simulations and 1D analytic theory, namely, capsule scale R ∼ α if and ∼1/Tr3 for a given igniting yield. At the current NIF capabilities of 2 MJ and 450 TW, we expect 15 MJ yields are attainable by employing successful design optimizations. We also anticipate that addressing key implosion physics questions will be necessary to achieve this yield level. First, this includes determining the extent to which lower adiabat designs leading to higher compression can increase gain and efficiency. Second, we will investigate whether we can decrease excessive RKE and/or ablator-fuel mix if it ultimately restricts the burn-up fraction that is currently somewhat lower than 1D predictions.

We then projected performance for a proposed NIF upgrade to either 2.6 MJ, 540 TW or EL = 3 MJ at fixed 450 TW peak power. The 2.6 MJ track lends itself to hydroscaling by +10% in scale R, +20% in peak power and +30% in EL, reaching projected yields of over 20 MJ. For the EL = 3 MJ at fixed 450 TW peak power track, we have worked through an example strategy for which the hohlraum and capsule radii scale as EL1/2 while the DT fuel thickness scales even faster, linearly with EL, compared to the usual hydroscaling as EL1/3. This leads to ≈6% lower Tr driving capsules to ≈9% lower vimp that still meet the conditions for ignition. The larger capsule radii and fuel thicknesses should allow for yields reaching up to 60 MJ, depending on the efficiency gain factors ηh and ηc realized in reducing hohlraum losses and switching to lower Z ablators (e.g., CH vs current C), respectively. In particular, we show that the optimum peak power at a given energy scales as ≈1/ηc0.8. Further extrapolating to a Be ablator with an estimated 15% higher ηc than CH, Mfuel and ρr can be increased a further 32% and 7% corresponding to yields of ≈75–85 MJ.

The LPI scaling in all these larger hohlraums driven at 3 MJ looks favorable if the spot size is increased with hohlraum scale. Nonetheless, LPI tests are planned in the near term in larger hohlraums to probe the SBS and SRS thresholds as function of gas-fill, and of laser intensity by intentionally increasing the CBET to a given cone. The scaling for drive symmetry control is also favorable, with hotter coronal plasmas predicted due to reduced conduction losses in larger hohlraums allowing for more inner cone transmission.

However, controlling the drive symmetry in smaller and more efficient hohlraums, and for lower density and more efficient ablators such as CH that require longer pulse drives, present and will continue to present challenges. Addressing these issues will require focused experiments using existing and improved optical, x-ray, and nuclear techniques to better understand and characterize hohlraum and capsule dynamics. The likelihood of improving yields, from most credible to most risky, can be currently ordered as using more energy, improving compression, switching to a more efficient ablator, and finally improving hohlraum efficiency.

We have presented conservative scalings in the sense that they do not include reducing the in-flight adiabat lower than approximately 2.8. This is done on purpose to avoid the threat of instability growth of imperfections that can thwart ignition at higher levels of compression, as for the original low-foot NIF implosion campaign.67 We have restricted ourselves in this paper to moderate adiabat designs which are igniting. These extrapolate to providing target gains of ≈7 at current scale with the improved designs presented. Increasing gain can in principle be accomplished by either reducing adiabat or increasing scale to increase ρr. The main track presented here for reaching target gains of 25 is using larger capsules that contain more DT fuel. We also expect any non-ideal engineering features of fixed size will be less of a degradation factor as we increase scale.

It should also be understood that the 1D extrapolations presented here are only meant to serve as a guide to the potential performance improvements for the various design optimization directions. Each design direction is and will be using 2D and 3D radiation-hydrodynamic simulations that are a prerequisite for proposing and launching any new implosion design at NIF. This includes computer assisted searches for the optimum design space and tradeoffs, that also incorporate the knowledge gained from empirical trends. Moreover, focused and integrated implosion experiments, often iterative, will be needed for the foreseeable future to refine those simulation predictions and fully explore the yield potential of a given design.

The data that support the findings of this study are available from the corresponding author upon reasonable request.

This work was performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

The authors have no conflicts to disclose.

O. L. Landen: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Writing – original draft (lead); Writing – review & editing (equal). P. A. Amendt: Conceptualization (equal); Investigation (equal); Resources (equal). D. D.-M Ho: Resources (equal); Validation (equal). J. L. Milovich: Conceptualization (equal); Formal analysis (equal); Validation (equal); Writing – review & editing (equal). J. E. Ralph: Conceptualization (equal); Formal analysis (equal); Resources (equal). D. S. Clark: Conceptualization (equal); Investigation (equal); Resources (equal). K. D. Humbird: Conceptualization (equal); Investigation (equal). M. Hohenberger: Investigation (equal); Resources (equal). C. R. Weber: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Resources (equal); Validation (equal). R. Tommasini: Formal analysis (equal); Resources (equal); Writing – review & editing (equal). D. T. Casey: Conceptualization (equal); Formal analysis (equal); Resources (equal); Writing – review & editing (equal). R. C. Nora: Data curation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing – review & editing (equal). C. V. Young: Conceptualization (equal); Investigation (equal); Validation (equal). D. J. Schlossberg: Data curation (equal); Resources (equal); Validation (equal). S. A. MacLaren: Conceptualization (equal); Formal analysis (equal); Methodology (equal); Validation (equal). E. L. Dewald: Conceptualization (equal); Investigation (equal); Writing – review & editing (equal). P. F. Schmit: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Validation (equal). T. Chapman: Conceptualization (equal); Formal analysis (equal); Methodology (equal). D. E. Hinkel: Investigation (equal); Supervision (equal). J. D. Moody: Conceptualization (equal); Validation (equal); Writing – review & editing (equal). V. A. Smalyuk: Conceptualization (equal); Investigation (equal); Writing – review & editing (equal). O. A. Hurricane: Conceptualization (equal); Formal analysis (equal); Methodology (equal). J. D. Lindl: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Methodology (equal); Resources (equal); Validation (equal); Writing – review & editing (equal). R. P. J. Town: Conceptualization (equal); Supervision (lead). A. L. Kritcher: Conceptualization (equal); Formal analysis (equal); Methodology (equal); Resources (equal). S. W. Haan: Resources (equal); Validation (equal). M. D. Rosen: Conceptualization (equal); Formal analysis (equal); Methodology (equal). A. Pak: Conceptualization (equal); Resources (equal); Writing – review & editing (equal). L. Divol: Formal analysis (equal); Methodology (equal). K. L. Baker: Data curation (equal); Methodology (equal); Resources (equal).

The data that support the findings of this study are available from the corresponding author upon reasonable request.

The burn-up fraction ϕ in the limit of negligible depletion is given by
ϕ = n i σ v i τ burn = 74 ρ T i 7 / T i 0.2 r v = 10 5 ρ r T i 7 / T i 0.2 0.5 ,
(A1)
where the middle expression has substituted for the Maxwellian averaged DT fusion reactivity70 ⟨σvi⟩ prefactor = 4 × 10−21 cm3/s at Ti = 1 keV, for the D or T number density ni (cm−3) = 1.2 × 1023ρ (g/cm3), and for the confinement time τburn at peak Ti = 015r/v as discussed in main text. Time-resolved x-ray images of the exploding fuel42 show an expansion rate v of about 230 μm/ns at Ti = 10 keV, so further substituting for v = 73 × 105 T i cm/s in Eq. (A1) leads to the final expression. For a typical measured r = 50 μm, we note that τburn is a plausible 33 ps.

Figure 11 plots the 1D Lasnex128 simulated burn-up fractions16 vs the model according to Eq. (A1) for a variety of CH and C-based designs with R = 0.9 to 1 mm and ranging from low (1.5) to medium adiabat (3). The peak drive Tr and, hence, vimp is varied to provide a range of burn-up fractions. The solid (open) circles represent the model ϕ/(1+ϕ) assuming the ρr in the absence of (with) alpha heating, respectively. We see that both models track the simulated burn-up fractions for ϕ > 0.05, when all the DT fuel is participating in the burn.

FIG. 11.

Simulated vs analytic burn-up fraction using ρr with (open) and without alpha heating (closed circles). Solid line represents x = y.

FIG. 11.

Simulated vs analytic burn-up fraction using ρr with (open) and without alpha heating (closed circles). Solid line represents x = y.

Close modal

The burn-up model at small Ti or ρr overestimates in Fig. 11 the simulated burn-up fraction because under those conditions, only a small fraction of the fuel is burning, and therefore, the burn averaged temperature is not representative of the average fuel temperature. The offset between the two burn-up fraction models is given by the ratio of ρr burn-on/ρr burn-off ≈ 0.6 over the range 70 < Yamp < 500, relevant to the best NIF performing shots. The model using the ρr that includes the expansion due to alpha heating matches well 1D simulations.

The procedure for extracting the analytic burn-up fraction from data are as follows. The ρr that provides the inertia of expansion that, combined with the burning fuel temperature and density, determines the maximum burn-up fraction can be estimated for every implosion from the measured DSR. Correcting for the effects of expansion due to alpha heating, and the 8× lower DT neutron scattering16 cross-section for C vs DT, we arrive at the following formula for the ρr in the absence of alpha heating:
ρ r = 27.5 D S R / 0.52 e l n Y amp l n 15 / l n 2.2 + 1 + 0.5 ,
(A2)
where the term in parentheses is a fit to the ratio of DSR/DSRno-α, that has been shown through 1D simulations to be a universal function of Yamp for a range of implosion adiabats.16 The prefactor of 27.5 in Eq. (A1) includes an average 35% contribution to ρr from the stagnated ablator. This is based on simulations41 for relevant Mr ≈ Mfuel and measurements of the total C areal density on a subset of the implosions using an energy resolving gamma detector129 measuring the 4.4 MeV gamma yield from the C(n, n′)γ reaction.130 That prefactor multiplied by the measured DSR of 0.042 ± 0.0015 on the dudded THD version of N210808 (experiment N220220)131 leads to the ρr of 1.15 g/cm2 listed on Fig. 3.
Yamp is derived from its one-to-one correspondence16,132 with the ignition metric ITFXα that is a function of the observables of 13– 15 MeV neutron yield and DSR. This can be fit piecewise by the following, with Mfuel in μg:
Y amp = DSR . 071 2.1 Yield α 4 e 15 170 M fuel 1.25 for Y amp > 6 and < Y max , Y amp = e 0.9 DSR . 071 2.1 Yield α 4 e 15 170 M fuel 0.47 for Y amp < 6.
(A3)
The Yamp > 6 threshold was first reached on shot N210808 that met the Lawson criterion and according to Eq. (A2), is now ≈100 on N230729. 1D simulations16 predict a maximum Yamp of ∼150 at the estimated ρr = 1.25 g/cm2 of N230729, so suggest we are close to reaching the Ymax plateau at this value of ρr.

The uncertainty in the corrected ρr is estimated at 10%. This is a small contributor to the 20% uncertainty in the maximum burn-up fraction as shown on Fig. 5, dominated by the uncertainty in measured Ti. The solid and open circles represent the model ϕ assuming the no-α ρr and the burn-averaged ρr that does not use the Yamp correction from Eq. (A3), respectively. At low burn-up fractions and hence low Yamp, as for Fig. 11, there is no distinction in ρr's; hence, the open and closed circles overlap.

We explain here in detail the generalized scalings to E = 2.6 and 3 MJ on Table II, that led to the projected yields and capsule scales on Fig. 9 for both C and CH designs with and without improved hohlraum efficiency. The algebraic expressions are given as power laws of EL, ηh, ηc and μ. The values listed are the calculated multipliers relative to the existing igniting C designs with ηh, ηc and μ defined as 1, EL = 2 MJ, PL = 435 TW, R = 1.05 mm, Rh = 3.2 mm, Tr = 310 eV, vimp = 390 μm/ns, ΔRfuel = 65 μm, Mimp/M0 ∼ 10% equally divided between ablator Mr and fuel Mfuel, ρr ≈ 1.25 g/cm2, and GLC ≈ 1.1. The hydroscaling track assuming a potential NIF upgrade to EL = 2.6 MJ and PL = 520 TW is shown in the first two columns. This design projects to R = 1.15 mm, Rh = 3.5 mm, yielding GLC ≈ 1.4. To maintain strict hydroscaling as discussed earlier, we have temporarily assumed fixed fractional losses, which can be viewed for example as fixing hohlraum wall albedo in Tr and τpeak such that Tr ∼ (PL/Rh2)1/4 is also fixed We note the ignition robustness GLC is well past what should be needed to ignite (1), but Ymax is only scaling as EL4/3, so only increasing by 1.4× for a 30% increase in EL. Also shown on the first column is the strategy for using an improved efficiency hohlraum (multiplier ηh > 1) at full EL while still maintaining hydroscaling. Specifically, the peak power and duration τpeak are reduced and increased by ηh1/3 respectively, but the gain in Ymax is only improved by ηh4/3.

The more promising but riskier non-hydroscaled tracks, which scale R and ΔRfuel faster than EL1/3 as explained in main text, are shown in the other columns of Table II. The strategy here is to find a scaling that maximizes R and ΔRfuel and hence Mfuel and Ymax, while keeping the ignition metric GLC multiplier close to 1. A 3 MJ upgrade limited to 450 TW means that for projecting from existing 2 MJ, 435 TW igniting C designs, one has to make use of 1.5× more laser energy but only a few % more peak power, hence 1.4× longer peak power duration τpeak. To optimally use such a longer peak drive requires proportionately longer capsule acceleration times hence larger capsules to keep vimp ∼ R/τpeak high enough to ensure ignition per the GLC metric. Thus, we arrived at R and Rh ∼ EL1/2 that maintain fixed coupling efficiency between hohlraum and capsule while decreasing Tr and vimp by 5%–10%. We note that this strategy also keeps the fractional hohlraum plasma inward expansion from x-ray ablation at peak power close to constant, scaling as Tr2τpeak/Rh. The other choice was the scaling of ΔRfuel, which we set to rise even faster, ∼EL, since Mfuel/M0 and Mfuel/Mimp that are currently at 5% and 50% provide margin for replacing ablator with extra DT fuel.

The methodology to then calculate the scaling of key parameters Mimp, ρr, GLC and Ymax at stagnation is as follows: We substitute for M0 ≈ Ma according to Eq. (8) into Eq. (7) to give a second constraint on vimp based on the Rocket model, and equate the two,
v imp R τ peak R 2 T r 4 τ peak M imp .
(B1)
We note this equality is independent of μ that cancels out in the substitutions but will reappear in the context of ablation pressure. Substituting for the previously derived scaling in Table II of each parameter (R, Tr, τpeak) with ηh and EL, we arrive at a generalized scaling for Mimp ∼ R2ΔRfueln to best satisfy Eq. (B1). For the hydroscaling case as expected, the exact fit exponent is n = 1, reflecting the fact that Mr/R2 and ΔRfuel ∼ Mfuel/R2 and hence (Mr + Mfuel)/R2 = Mimp/R2 are all increasing by the same factor by definition. For the non-hydroscaled cases, n will in general, vary as scale-up, but we find on average n = 0.67 and 0.5 for C and CH designs for best fit to the Eq. (B1) equality. Thus, to summarize, the Mimp sensitivity to ΔRfuel is set for consistency between two constraints on vimp. For example, if the ablator areal mass remaining ∼Mr/R2 were fixed as change scale, then expanding around Mr = Mfuel leads to Mimp ∼ ΔRfuel0.5. The exponent n is probably the most uncertain parameter in this table. The effective exponent could be higher, per prior discussion that simulations with all else being equal suggest fuel mass has more weighting than remaining ablator mass in setting ρr, final pressure, and yield. Thus, we consider the current scaling of parameters depending on Mimp (ρr, Ymax and GLC) in Table II to be on the conservative side. This is the justification for letting the GLC multiplier fall slightly below 1 for ηh = 1. The middle columns in Table II include the non-hydroscaling case for C designs with enhanced ηh. In the spirit of maximizing Ymax, we assume Mfuel ∼ R2ΔRfuel further increases by a factor ηh2. In contrast to the hydroscaling case, given a higher ηh, there is no impetus to lower PL and increase τpeak since we see that GLC is marginal for ηh = 1. Instead, by keeping PL at its maximum value, τpeak independent of ηh, and scaling R as ηh0.5 to take advantage of Tr also increasing as ηh0.27, we increase vimp (for either of its solutions). GLC then increases significantly due to its strong dependence on vimp and hence ηh. This highlights why we remain interested in further improving ηh, even just by 5%–10%, to increase the x-ray power ∼ηhPL.

The three right hand columns show the non-hydroscaling sensitivities for a change in ablator characterized by multipliers in ablator efficiency ηc and mean atomic weight per plasma particle μ as defined and described in Sec. IV C. We begin by assuming that equivalent peak velocity conditions (same vimp, Mimp, αif) as igniting 2 MJ, 435 TW C designs can be reached at 2/ηc MJ and 435/ηc TW using the same R, Rh, and τpeak. Integrated 2D Hydra37 simulations have demonstrated this equivalence for a doped CH design (μ ≈ 0.84) at EL = 1.72 MJ and PL = 376 TW, hence corresponding to ηc = 1.16. The strategy for projecting to 3 MJ is again different as the 450 TW limit is now well above the 375 TW starting design. If we want to maximize Mfuel by further scaling R as ηc, using the full 450 TW available leads to too high a R/τpeak ratio and hence vimp, and too little Mr/R2. To maintain an adequate Mr/R2 requires an intermediate PL scaling multiplier, ∼(ηcEL)0.2 such that PL = 420 TW. This increases τpeak, and reduces vimp and Tr by ≈ the same 10 and 7% as for the C design. The exponent (currently 0.2) is in general, an increasing function of ηc. In absolute value, PL ∼ (ηcEL)0.2c ∼ 1/ηc0.8, highlighting the well-known design strategy that more efficient lower Z ablators are best suited to lower PL and Tr. The faster optimum PL scaling for ηc > 1 (EL0.2 vs EL0.1) is a direct consequence of not being limited by the 450 TW peak power. The additional ηc dependence for optimum PL as shown in Table II propagates throughout. By contrast, the μ dependence only appears for the parameters that depend on Pabl, ρr, GLC and Ymax. The final column combines both hohlraum and ablator efficiency, with the understanding that approximate since the non-hydroscaled C and CH designs have slightly different dependencies on EL.

Finally, to plot the projected yields relative to the hydroscaling curve of Fig. 9 at their given value of R, we use the ratio between non-hydroscaled Ymax and hydroscaled Ymax ∼ R4, given by the last row in Table II. This is only a strictly valid procedure for fully saturated yields, that fortunately encompass all the non-hydroscaled designs (Y > 30 MJ, R > 1.3 mm according to Fig. 2). Coincidentally that Ymax ratio is identical to the ρr multiplier tabulated in an earlier row because the current non-hydroscaling strategy assumes Mfuel ∼ R2ΔRfuel ∼ R4.

The choice to plot yields vs capsule scale rather than laser or drive energy as is usually done in textbooks33 and early publications31 is worth a note. The advantage is seen most clearly in Fig. 9 where even non-hydroscaled predictions lie close to a single hydroscale curve at a given vimp and αif, as given by the simple scaling in the last row of Table II. A comparison of Figs. 2 and 9 shows, that for the same EL = 3 MJ, the constant peak power scaling strategy provides higher yields by allowing an increase in R from 1.2 to 1.3 mm, hence in yield ∼R5 of ≈50%.

We present an addendum to Sec. III A on calculating the margin for ignition as one increases the initial capsule thickness ΔR under the condition of fixed EL, hohlraum and capsule radii. This is best addressed using ITF as the ignition metric, and the associated equations in Sec. IV B.

Specifically, if we first substitute for M0/Mimp in Eq. (6) using Eq. (7) and as before, for Pabl ∼ Tr3.3, then we have for a given R,
ITF R 2 Δ R v imp 6.0 T r 3.5 .
(C1)
Since we are interested in the dependence of ITF on ΔR, we need to include dependencies of Tr and vimp on ΔR. As ΔR is increased, the laser peak power PL at fixed EL also has to drop to accommodate a longer capsule acceleration phase of duration τpeak ∼ R/vimp. According to Table II, for a given Rh, EL ∼ Tr3.7τpeak0.7; hence, Tr3.7 ∼ vimp0.7 at fixed EL. Substituting for Tr in Eq. (C1) and dropping the assumed fixed R term,
ITF Δ R v imp 6.7 .
(C2)
Now, referring back to Sec. III A, we invoked a thick shell model,19 validated by numerically solving the Rocket equations, that gave vimp ∼ 1/ΔR0.4 for fixed PL,. Similarly, for fixed ΔR, the same model finds vimp ∼ Tr2.4, consistent with integrated simulations giving vimp ∼ PL0.7. Hence, equating the above constraint of vimp ∼ Tr3.5 to match acceleration time, to the Rocket model constraints that vimp ∼ Tr2.4/ΔR0.4, we can eliminate Tr and arrive at vimp ∼1/ΔR0.7. Substituting for vimp in Eq. (C2),
ITF 1 / Δ R 4 .
(C3)

So given that the estimated ITF margin above ignition for existing igniting shots is about 20% (=10% in GLC) as stated in the introduction of Sec. V, we would expect to fail to ignite for a 5% further increase in ΔR at fixed EL. This is consistent with designs based on simulations only considering further ΔR increases of 5%–10% at a given EL. This also explains why the non-hydroscaled paths in Sec. V B for which Tr and vimp are also decreasing use larger capsules (ITF ∼ R2) to regain ignition margin.

1.
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B. B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
,
A.
Aguirre
,
D.
Aikens
,
J.
Akre
,
F.
Albert
,
M.
Albrecht
,
B. J.
Albright
,
J.
Albritton
,
J.
Alcala
,
C.
Alday
,
D. A.
Alessi
,
N.
Alexander
,
J.
Alfonso
,
N.
Alfonso
,
E.
Alger
,
S. J.
Ali
,
Z. A.
Ali
,
W. E.
Alley
,
P.
Amala
,
P. A.
Amendt
,
P.
Amick
,
S.
Ammula
,
C.
Amorin
,
D. J.
Ampleford
,
R. W.
Anderson
,
T.
Anklam
,
N.
Antipa
,
B.
Appelbe
,
C.
Aracne-Ruddle
,
E.
Araya
,
M.
Arend
,
P.
Arnold
,
T.
Arnold
,
J.
Asay
,
L. J.
Atherton
,
D.
Atkinson
,
R.
Atkinson
,
J. M.
Auerbach
,
B.
Austin
,
L.
Auyang
,
A. S.
Awwal
,
J.
Ayers
,
S.
Ayers
,
T.
Ayers
,
S.
Azevedo
,
B.
Bachmann
,
C. A.
Back
,
J.
Bae
,
D. S.
Bailey
,
J.
Bailey
,
T.
Baisden
,
K. L.
Baker
,
H.
Baldis
,
D.
Barber
,
M.
Barberis
,
D.
Barker
,
A.
Barnes
,
C. W.
Barnes
,
M. A.
Barrios
,
C.
Barty
,
I.
Bass
,
S. H.
Batha
,
S. H.
Baxamusa
,
G.
Bazan
,
J. K.
Beagle
,
R.
Beale
,
B. R.
Beck
,
J. B.
Beck
,
M.
Bedzyk
,
R. G.
Beeler
,
R. G.
Beeler
,
W.
Behrendt
,
L.
Belk
,
P.
Bell
,
M.
Belyaev
,
J. F.
Benage
,
G.
Bennett
,
L. R.
Benedetti
,
L. X.
Benedict
,
R.
Berger
,
T.
Bernat
,
L. A.
Bernstein
,
B.
Berry
,
L.
Bertolini
,
G.
Besenbruch
,
J.
Betcher
,
R.
Bettenhausen
,
R.
Betti
,
B.
Bezzerides
,
S. D.
Bhandarkar
,
R.
Bickel
,
J.
Biener
,
T.
Biesiada
,
K.
Bigelow
,
J.
Bigelow-Granillo
,
V.
Bigman
,
R. M.
Bionta
,
N. W.
Birge
,
M.
Bitter
,
A. C.
Black
,
R.
Bleile
,
D. L.
Bleuel
,
E.
Bliss
,
E.
Bliss
,
B.
Blue
,
T.
Boehly
,
K.
Boehm
,
C. D.
Boley
,
R.
Bonanno
,
E. J.
Bond
,
T.
Bond
,
M. J.
Bonino
,
M.
Borden
,
J. L.
Bourgade
,
J.
Bousquet
,
J.
Bowers
,
M.
Bowers
,
R.
Boyd
,
A.
Bozek
,
D. K.
Bradley
,
K. S.
Bradley
,
P. A.
Bradley
,
L.
Bradley
,
L.
Brannon
,
P. S.
Brantley
,
D.
Braun
,
T.
Braun
,
K.
Brienza-Larsen
,
T. M.
Briggs
,
J.
Britten
,
E. D.
Brooks
,
D.
Browning
,
M. W.
Bruhn
,
T. A.
Brunner
,
H.
Bruns
,
G.
Brunton
,
B.
Bryant
,
T.
Buczek
,
J.
Bude
,
L.
Buitano
,
S.
Burkhart
,
J.
Burmark
,
A.
Burnham
,
R.
Burr
,
L. E.
Busby
,
B.
Butlin
,
R.
Cabeltis
,
M.
Cable
,
W. H.
Cabot
,
B.
Cagadas
,
J.
Caggiano
,
R.
Cahayag
,
S. E.
Caldwell
,
S.
Calkins
,
D. A.
Callahan
,
J.
Calleja-Aguirre
,
L.
Camara
,
D.
Camp
,
E. M.
Campbell
,
J. H.
Campbell
,
B.
Carey
,
R.
Carey
,
K.
Carlisle
,
L.
Carlson
,
L.
Carman
,
J.
Carmichael
,
A.
Carpenter
,
C.
Carr
,
J. A.
Carrera
,
D.
Casavant
,
A.
Casey
,
D. T.
Casey
,
A.
Castillo
,
E.
Castillo
,
J. I.
Castor
,
C.
Castro
,
W.
Caughey
,
R.
Cavitt
,
J.
Celeste
,
P. M.
Celliers
,
C.
Cerjan
,
G.
Chandler
,
B.
Chang
,
C.
Chang
,
J.
Chang
,
L.
Chang
,
R.
Chapman
,
T.
Chapman
,
L.
Chase
,
H.
Chen
,
H.
Chen
,
K.
Chen
,
L. Y.
Chen
,
B.
Cheng
,
J.
Chittenden
,
C.
Choate
,
J.
Chou
,
R. E.
Chrien
,
M.
Chrisp
,
K.
Christensen
,
M.
Christensen
,
A. R.
Christopherson
,
M.
Chung
,
J. A.
Church
,
A.
Clark
,
D. S.
Clark
,
K.
Clark
,
R.
Clark
,
L.
Claus
,
B.
Cline
,
J. A.
Cline
,
J. A.
Cobble
,
K.
Cochrane
,
B.
Cohen
,
S.
Cohen
,
M. R.
Collette
,
G.
Collins
,
L. A.
Collins
,
T. J. B.
Collins
,
A.
Conder
,
B.
Conrad
,
M.
Conyers
,
A. W.
Cook
,
D.
Cook
,
R.
Cook
,
J. C.
Cooley
,
G.
Cooper
,
T.
Cope
,
S. R.
Copeland
,
F.
Coppari
,
J.
Cortez
,
J.
Cox
,
D. H.
Crandall
,
J.
Crane
,
R. S.
Craxton
,
M.
Cray
,
A.
Crilly
,
J. W.
Crippen
,
D.
Cross
,
M.
Cuneo
,
G.
Cuotts
,
C. E.
Czajka
,
D.
Czechowicz
,
T.
Daly
,
P.
Danforth
,
R.
Darbee
,
B.
Darlington
,
P.
Datte
,
L.
Dauffy
,
G.
Davalos
,
S.
Davidovits
,
P.
Davis
,
J.
Davis
,
S.
Dawson
,
R. D.
Day
,
T. H.
Day
,
M.
Dayton
,
C.
Deck
,
C.
Decker
,
C.
Deeney
,
K. A.
DeFriend
,
G.
Deis
,
N. D.
Delamater
,
J. A.
Delettrez
,
R.
Demaret
,
S.
Demos
,
S. M.
Dempsey
,
R.
Desjardin
,
T.
Desjardins
,
M. P.
Desjarlais
,
E. L.
Dewald
,
J.
DeYoreo
,
S.
Diaz
,
G.
Dimonte
,
T. R.
Dittrich
,
L.
Divol
,
S. N.
Dixit
,
J.
Dixon
,
E. S.
Dodd
,
D.
Dolan
,
A.
Donovan
,
M.
Donovan
,
T.
Doppner
,
C.
Dorrer
,
N.
Dorsano
,
M. R.
Douglas
,
D.
Dow
,
J.
Downie
,
E.
Downing
,
M.
Dozieres
,
V.
Draggoo
,
D.
Drake
,
R. P.
Drake
,
T.
Drake
,
G.
Dreifuerst
,
D. F.
DuBois
,
P. F.
DuBois
,
G.
Dunham
,
R.
Dylla-Spears
,
A. K. L.
Dymoke-Bradshaw
,
B.
Dzenitis
,
C.
Ebbers
,
M.
Eckart
,
S.
Eddinger
,
D.
Eder
,
D.
Edgell
,
M. J.
Edwards
,
P.
Efthimion
,
J. H.
Eggert
,
B.
Ehrlich
,
P.
Ehrmann
,
S.
Elhadj
,
C.
Ellerbee
,
N. S.
Elliott
,
C. L.
Ellison
,
F.
Elsner
,
M.
Emerich
,
K.
Engelhorn
,
T.
England
,
E.
English
,
P.
Epperson
,
R.
Epstein
,
G.
Erbert
,
M. A.
Erickson
,
D. J.
Erskine
,
A.
Erlandson
,
R. J.
Espinosa
,
C.
Estes
,
K. G.
Estabrook
,
S.
Evans
,
A.
Fabyan
,
J.
Fair
,
R.
Fallejo
,
N.
Farmer
,
W. A.
Farmer
,
M.
Farrell
,
V. E.
Fatherley
,
M.
Fedorov
,
E.
Feigenbaum
,
M.
Feit
,
W.
Ferguson
,
J. C.
Fernandez
,
A.
Fernandez-Panella
,
S.
Fess
,
J. E.
Field
,
C. V.
Filip
,
J. R.
Fincke
,
T.
Finn
,
S. M.
Finnegan
,
R. G.
Finucane
,
M.
Fischer
,
A.
Fisher
,
J.
Fisher
,
B.
Fishler
,
D.
Fittinghoff
,
P.
Fitzsimmons
,
M.
Flegel
,
K. A.
Flippo
,
J.
Florio
,
J.
Folta
,
P.
Folta
,
L. R.
Foreman
,
C.
Forrest
,
A.
Forsman
,
J.
Fooks
,
M.
Foord
,
R.
Fortner
,
K.
Fournier
,
D. E.
Fratanduono
,
N.
Frazier
,
T.
Frazier
,
C.
Frederick
,
M. S.
Freeman
,
J.
Frenje
,
D.
Frey
,
G.
Frieders
,
S.
Friedrich
,
D. H.
Froula
,
J.
Fry
,
T.
Fuller
,
J.
Gaffney
,
S.
Gales
,
B.
Le Galloudec
,
K. K.
Le Galloudec
,
A.
Gambhir
,
L.
Gao
,
W. J.
Garbett
,
A.
Garcia
,
C.
Gates
,
E.
Gaut
,
P.
Gauthier
,
Z.
Gavin
,
J.
Gaylord
,
M.
Geissel
,
F.
Genin
,
J.
Georgeson
,
H.
Geppert-Kleinrath
,
V.
Geppert-Kleinrath
,
N.
Gharibyan
,
J.
Gibson
,
C.
Gibson
,
E.
Giraldez
,
V.
Glebov
,
S. G.
Glendinning
,
S.
Glenn
,
S. H.
Glenzer
,
S.
Goade
,
P. L.
Gobby
,
S. R.
Goldman
,
B.
Golick
,
M.
Gomez
,
V.
Goncharov
,
D.
Goodin
,
P.
Grabowski
,
E.
Grafil
,
P.
Graham
,
J.
Grandy
,
E.
Grasz
,
F.
Graziani
,
G.
Greenman
,
J. A.
Greenough
,
A.
Greenwood
,
G.
Gregori
,
T.
Green
,
J. R.
Griego
,
G. P.
Grim
,
J.
Grondalski
,
S.
Gross
,
J.
Guckian
,
N.
Guler
,
B.
Gunney
,
G.
Guss
,
S.
Haan
,
J.
Hackbarth
,
L.
Hackel
,
R.
Hackel
,
C.
Haefner
,
C.
Hagmann
,
K. D.
Hahn
,
S.
Hahn
,
B. J.
Haid
,
B. M.
Haines
,
B. M.
Hall
,
C.
Hall
,
G. N.
Hall
,
M.
Hamamoto
,
S.
Hamel
,
C. E.
Hamilton
,
B. A.
Hammel
,
J. H.
Hammer
,
G.
Hampton
,
A.
Hamza
,
A.
Handler
,
S.
Hansen
,
D.
Hanson
,
R.
Haque
,
D.
Harding
,
E.
Harding
,
J. D.
Hares
,
D. B.
Harris
,
J. A.
Harte
,
E. P.
Hartouni
,
R.
Hatarik
,
S.
Hatchett
,
A. A.
Hauer
,
M.
Havre
,
R.
Hawley
,
J.
Hayes
,
J.
Hayes
,
S.
Hayes
,
A.
Hayes-Sterbenz
,
C. A.
Haynam
,
D. A.
Haynes
,
D.
Headley
,
A.
Heal
,
J. E.
Heebner
,
S.
Heerey
,
G. M.
Heestand
,
R.
Heeter
,
N.
Hein
,
C.
Heinbockel
,
C.
Hendricks
,
M.
Henesian
,
J.
Heninger
,
J.
Henrikson
,
E. A.
Henry
,
E. B.
Herbold
,
M. R.
Hermann
,
G.
Hermes
,
J. E.
Hernandez
,
V. J.
Hernandez
,
M. C.
Herrmann
,
H. W.
Herrmann
,
O. D.
Herrera
,
D.
Hewett
,
R.
Hibbard
,
D. G.
Hicks
,
D.
Hill
,
K.
Hill
,
T.
Hilsabeck
,
D. E.
Hinkel
,
D. D.
Ho
,
V. K.
Ho
,
J. K.
Hoffer
,
N. M.
Hoffman
,
M.
Hohenberger
,
M.
Hohensee
,
W.
Hoke
,
D.
Holdener
,
F.
Holdener
,
J. P.
Holder
,
B.
Holko
,
D.
Holunga
,
J. F.
Holzrichter
,
J.
Honig
,
D.
Hoover
,
D.
Hopkins
,
L.
Berzak Hopkins
,
M.
Hoppe
,
M. L.
Hoppe
,
J.
Horner
,
R.
Hornung
,
C. J.
Horsfield
,
J.
Horvath
,
D.
Hotaling
,
R.
House
,
L.
Howell
,
W. W.
Hsing
,
S. X.
Hu
,
H.
Huang
,
J.
Huckins
,
H.
Hui
,
K. D.
Humbird
,
J.
Hund
,
J.
Hunt
,
O. A.
Hurricane
,
M.
Hutton
,
K. H.
Huynh
,
L.
Inandan
,
C.
Iglesias
,
I. V.
Igumenshchev
,
N.
Izumi
,
M.
Jackson
,
J.
Jackson
,
S. D.
Jacobs
,
G.
James
,
K.
Jancaitis
,
J.
Jarboe
,
L. C.
Jarrott
,
D.
Jasion
,
J.
Jaquez
,
J.
Jeet
,
A. E.
Jenei
,
J.
Jensen
,
J.
Jimenez
,
R.
Jimenez
,
D.
Jobe
,
Z.
Johal
,
H. M.
Johns
,
D.
Johnson
,
M. A.
Johnson
,
M.
Gatu Johnson
,
R. J.
Johnson
,
S.
Johnson
,
S. A.
Johnson
,
T.
Johnson
,
K.
Jones
,
O.
Jones
,
M.
Jones
,
R.
Jorge
,
H. J.
Jorgenson
,
M.
Julian
,
B. I.
Jun
,
R.
Jungquist
,
J.
Kaae
,
N.
Kabadi
,
D.
Kaczala
,
D.
Kalantar
,
K.
Kangas
,
V. V.
Karasiev
,
M.
Karasik
,
V.
Karpenko
,
A.
Kasarky
,
K.
Kasper
,
R.
Kauffman
,
M. I.
Kaufman
,
C.
Keane
,
L.
Keaty
,
L.
Kegelmeyer
,
P. A.
Keiter
,
P. A.
Kellett
,
J.
Kellogg
,
J. H.
Kelly
,
S.
Kemic
,
A. J.
Kemp
,
G. E.
Kemp
,
G. D.
Kerbel
,
D.
Kershaw
,
S. M.
Kerr
,
T. J.
Kessler
,
M. H.
Key
,
S. F.
Khan
,
H.
Khater
,
C.
Kiikka
,
J.
Kilkenny
,
Y.
Kim
,
Y. J.
Kim
,
J.
Kimko
,
M.
Kimmel
,
J. M.
Kindel
,
J.
King
,
R. K.
Kirkwood
,
L.
Klaus
,
D.
Klem
,
J. L.
Kline
,
J.
Klingmann
,
G.
Kluth
,
P.
Knapp
,
J.
Knauer
,
J.
Knipping
,
M.
Knudson
,
D.
Kobs
,
J.
Koch
,
T.
Kohut
,
C.
Kong
,
J. M.
Koning
,
P.
Koning
,
S.
Konior
,
H.
Kornblum
,
L. B.
Kot
,
B.
Kozioziemski
,
M.
Kozlowski
,
P. M.
Kozlowski
,
J.
Krammen
,
N. S.
Krasheninnikova
,
B.
Kraus
,
W.
Krauser
,
J. D.
Kress
,
A. L.
Kritcher
,
E.
Krieger
,
J. J.
Kroll
,
W. L.
Kruer
,
M. K. G.
Kruse
,
S.
Kucheyev
,
M.
Kumbera
,
S.
Kumpan
,
J.
Kunimune
,
B.
Kustowski
,
T. J. T.
Kwan
,
G. A.
Kyrala
,
S.
Laffite
,
M.
Lafon
,
K.
LaFortune
,
B.
Lahmann
,
B.
Lairson
,
O. L.
Landen
,
J.
Langenbrunner
,
L.
Lagin
,
T.
Land
,
M.
Lane
,
D.
Laney
,
A. B.
Langdon
,
S. H.
Langer
,
A.
Langro
,
N. E.
Lanier
,
T. E.
Lanier
,
D.
Larson
,
B. F.
Lasinski
,
D.
Lassle
,
D.
LaTray
,
G.
Lau
,
N.
Lau
,
C.
Laumann
,
A.
Laurence
,
T. A.
Laurence
,
J.
Lawson
,
H. P.
Le
,
R. R.
Leach
,
L.
Leal
,
A.
Leatherland
,
K.
LeChien
,
B.
Lechleiter
,
A.
Lee
,
M.
Lee
,
T.
Lee
,
R. J.
Leeper
,
E.
Lefebvre
,
J. P.
Leidinger
,
B.
LeMire
,
R. W.
Lemke
,
N. C.
Lemos
,
S.
Le Pape
,
R.
Lerche
,
S.
Lerner
,
S.
Letts
,
K.
Levedahl
,
T.
Lewis
,
C. K.
Li
,
H.
Li
,
J.
Li
,
W.
Liao
,
Z. M.
Liao
,
D.
Liedahl
,
J.
Liebman
,
G.
Lindford
,
E. L.
Lindman
,
J. D.
Lindl
,
H.
Loey
,
R. A.
London
,
F.
Long
,
E. N.
Loomis
,
F. E.
Lopez
,
H.
Lopez
,
E.
Losbanos
,
S.
Loucks
,
R.
Lowe-Webb
,
E.
Lundgren
,
A. P.
Ludwigsen
,
R.
Luo
,
J.
Lusk
,
R.
Lyons
,
T.
Ma
,
Y.
Macallop
,
M. J.
MacDonald
,
B. J.
MacGowan
,
J. M.
Mack
,
A. J.
Mackinnon
,
S. A.
MacLaren
,
A. G.
MacPhee
,
G. R.
Magelssen
,
J.
Magoon
,
R. M.
Malone
,
T.
Malsbury
,
R.
Managan
,
R.
Mancini
,
K.
Manes
,
D.
Maney
,
D.
Manha
,
O. M.
Mannion
,
A. M.
Manuel
,
E.
Mapoles
,
G.
Mara
,
T.
Marcotte
,
E.
Marin
,
M. M.
Marinak
,
C.
Mariscal
,
D. A.
Mariscal
,
E. F.
Mariscal
,
E. V.
Marley
,
J. A.
Marozas
,
R.
Marquez
,
C. D.
Marshall
,
F. J.
Marshall
,
M.
Marshall
,
S.
Marshall
,
J.
Marticorena
,
D.
Martinez
,
I.
Maslennikov
,
D.
Mason
,
R. J.
Mason
,
L.
Masse
,
W.
Massey
,
P. E.
Masson-Laborde
,
N. D.
Masters
,
D.
Mathisen
,
E.
Mathison
,
J.
Matone
,
M. J.
Matthews
,
C.
Mattoon
,
T. R.
Mattsson
,
K.
Matzen
,
C. W.
Mauche
,
M.
Mauldin
,
T.
McAbee
,
M.
McBurney
,
T.
McCarville
,
R. L.
McCrory
,
A. M.
McEvoy
,
C.
McGuffey
,
M.
McInnis
,
P.
McKenty
,
M. S.
McKinley
,
J. B.
McLeod
,
A.
McPherson
,
B.
McQuillan
,
M.
Meamber
,
K. D.
Meaney
,
N. B.
Meezan
,
R.
Meissner
,
T. A.
Mehlhorn
,
N. C.
Mehta
,
J.
Menapace
,
F. E.
Merrill
,
B. T.
Merritt
,
E. C.
Merritt
,
D. D.
Meyerhofer
,
S.
Mezyk
,
R. J.
Mich
,
P. A.
Michel
,
D.
Milam
,
C.
Miller
,
D.
Miller
,
D. S.
Miller
,
E.
Miller
,
E. K.
Miller
,
J.
Miller
,
M.
Miller
,
P. E.
Miller
,
T.
Miller
,
W.
Miller
,
V.
Miller-Kamm
,
M.
Millot
,
J. L.
Milovich
,
P.
Minner
,
J. L.
Miquel
,
S.
Mitchell
,
K.
Molvig
,
R. C.
Montesanti
,
D. S.
Montgomery
,
M.
Monticelli
,
A.
Montoya
,
J. D.
Moody
,
A. S.
Moore
,
E.
Moore
,
M.
Moran
,
J. C.
Moreno
,
K.
Moreno
,
B. E.
Morgan
,
T.
Morrow
,
J. W.
Morton
,
E.
Moses
,
K.
Moy
,
R.
Muir
,
M. S.
Murillo
,
J. E.
Murray
,
J. R.
Murray
,
D. H.
Munro
,
T. J.
Murphy
,
F. M.
Munteanu
,
J.
Nafziger
,
T.
Nagayama
,
S. R.
Nagel
,
R.
Nast
,
R. A.
Negres
,
A.
Nelson
,
D.
Nelson
,
J.
Nelson
,
S.
Nelson
,
S.
Nemethy
,
P.
Neumayer
,
K.
Newman
,
M.
Newton
,
H.
Nguyen
,
J. G. Di
Nicola
,
P. Di
Nicola
,
C.
Niemann
,
A.
Nikroo
,
P. M.
Nilson
,
A.
Nobile
,
V.
Noorai
,
R.
Nora
,
M.
Norton
,
M.
Nostrand
,
V.
Note
,
S.
Novell
,
P. F.
Nowak
,
A.
Nunez
,
R. A.
Nyholm
,
M.
O'Brien
,
A.
Oceguera
,
J. A.
Oertel
,
J.
Okui
,
B.
Olejniczak
,
J.
Oliveira
,
P.
Olsen
,
B.
Olson
,
K.
Olson
,
R. E.
Olson
,
Y. P.
Opachich
,
N.
Orsi
,
C. D.
Orth
,
M.
Owen
,
S.
Padalino
,
E.
Padilla
,
R.
Paguio
,
S.
Paguio
,
J.
Paisner
,
S.
Pajoom
,
A.
Pak
,
S.
Palaniyappan
,
K.
Palma
,
T.
Pannell
,
F.
Papp
,
D.
Paras
,
T.
Parham
,
H. S.
Park
,
A.
Pasternak
,
S.
Patankar
,
M. V.
Patel
,
P. K.
Patel
,
R.
Patterson
,
S.
Patterson
,
B.
Paul
,
M.
Paul
,
E.
Pauli
,
O. T.
Pearce
,
J.
Pearcy
,
B.
Pedrotti
,
A.
Peer
,
L. J.
Pelz
,
B.
Penetrante
,
J.
Penner
,
A.
Perez
,
L. J.
Perkins
,
E.
Pernice
,
T. S.
Perry
,
S.
Person
,
D.
Petersen
,
T.
Petersen
,
D. L.
Peterson
,
E. B.
Peterson
,
J. E.
Peterson
,
J. L.
Peterson
,
K.
Peterson
,
R. R.
Peterson
,
R. D.
Petrasso
,
F.
Philippe
,
T. J.
Phipps
,
E.
Piceno
,
Y.
Ping
,
L.
Pickworth
,
J.
Pino
,
R.
Plummer
,
G. D.
Pollack
,
S. M.
Pollaine
,
B. B.
Pollock
,
D.
Ponce
,
J.
Ponce
,
J.
Pontelandolfo
,
J. L.
Porter
,
J.
Post
,
O.
Poujade
,
C.
Powell
,
H.
Powell
,
G.
Power
,
M.
Pozulp
,
M.
Prantil
,
M.
Prasad
,
S.
Pratuch
,
S.
Price
,
K.
Primdahl
,
S.
Prisbrey
,
R.
Procassini
,
A.
Pruyne
,
B.
Pudliner
,
S. R.
Qiu
,
K.
Quan
,
M.
Quinn
,
J.
Quintenz
,
P. B.
Radha
,
F.
Rainer
,
J. E.
Ralph
,
K. S.
Raman
,
R.
Raman
,
P.
Rambo
,
S.
Rana
,
A.
Randewich
,
D.
Rardin
,
M.
Ratledge
,
N.
Ravelo
,
F.
Ravizza
,
M.
Rayce
,
A.
Raymond
,
B.
Raymond
,
B.
Reed
,
C.
Reed
,
S.
Regan
,
B.
Reichelt
,
V.
Reis
,
S.
Reisdorf
,
V.
Rekow
,
B. A.
Remington
,
A.
Rendon
,
W.
Requieron
,
M.
Rever
,
H.
Reynolds
,
J.
Reynolds
,
J.
Rhodes
,
M.
Rhodes
,
M. C.
Richardson
,
B.
Rice
,
N. G.
Rice
,
R.
Rieben
,
A.
Rigatti
,
S.
Riggs
,
H. G.
Rinderknecht
,
K.
Ring
,
B.
Riordan
,
R.
Riquier
,
C.
Rivers
,
D.
Roberts
,
V.
Roberts
,
G.
Robertson
,
H. F.
Robey
,
J.
Robles
,
P.
Rocha
,
G.
Rochau
,
J.
Rodriguez
,
S.
Rodriguez
,
M.
Rosen
,
M.
Rosenberg
,
G.
Ross
,
J. S.
Ross
,
P.
Ross
,
J.
Rouse
,
D.
Rovang
,
A. M.
Rubenchik
,
M. S.
Rubery
,
C. L.
Ruiz
,
M.
Rushford
,
B.
Russ
,
J. R.
Rygg
,
B. S.
Ryujin
,
R. A.
Sacks
,
R. F.
Sacks
,
K.
Saito
,
T.
Salmon
,
J. D.
Salmonson
,
J.
Sanchez
,
S.
Samuelson
,
M.
Sanchez
,
C.
Sangster
,
A.
Saroyan
,
J.
Sater
,
A.
Satsangi
,
S.
Sauers
,
R.
Saunders
,
J. P.
Sauppe
,
R.
Sawicki
,
D.
Sayre
,
M.
Scanlan
,
K.
Schaffers
,
G. T.
Schappert
,
S.
Schiaffino
,
D. J.
Schlossberg
,
D. W.
Schmidt
,
M. J.
Schmitt
,
D. H. G.
Schneider
,
M. B.
Schneider
,
R.
Schneider
,
M.
Schoff
,
M.
Schollmeier
,
M.
Scholmerich
,
C. R.
Schroeder
,
S. E.
Schrauth
,
H. A.
Scott
,
I.
Scott
,
J. M.
Scott
,
R. H. H.
Scott
,
C. R.
Scullard
,
T.
Sedillo
,
F. H.
Seguin
,
W.
Seka
,
J.
Senecal
,
S. M.
Sepke
,
L.
Seppala
,
K.
Sequoia
,
J.
Severyn
,
J. M.
Sevier
,
N.
Sewell
,
S.
Seznec
,
R. C.
Shah
,
J.
Shamlian
,
D.
Shaughnessy
,
M.
Shaw
,
R.
Shaw
,
C.
Shearer
,
R.
Shelton
,
N.
Shen
,
M. W.
Sherlock
,
A. I.
Shestakov
,
E. L.
Shi
,
S. J.
Shin
,
N.
Shingleton
,
W.
Shmayda
,
M.
Shor
,
M.
Shoup
,
C.
Shuldberg
,
L.
Siegel
,
F. J.
Silva
,
A. N.
Simakov
,
B. T.
Sims
,
D.
Sinars
,
P.
Singh
,
H.
Sio
,
K.
Skulina
,
S.
Skupsky
,
S.
Slutz
,
M.
Sluyter
,
V. A.
Smalyuk
,
D.
Smauley
,
R. M.
Smeltser
,
C.
Smith
,
I.
Smith
,
J.
Smith
,
L.
Smith
,
R.
Smith
,
R.
Sohn
,
S.
Sommer
,
C.
Sorce
,
M.
Sorem
,
J. M.
Soures
,
M. L.
Spaeth
,
B. K.
Spears
,
S.
Speas
,
D.
Speck
,
R.
Speck
,
J.
Spears
,
T.
Spinka
,
P. T.
Springer
,
M.
Stadermann
,
B.
Stahl
,
J.
Stahoviak
,
L. G.
Stanton
,
R.
Steele
,
W.
Steele
,
D.
Steinman
,
R.
Stemke
,
R.
Stephens
,
S.
Sterbenz
,
P.
Sterne
,
D.
Stevens
,
J.
Stevers
,
C. B.
Still
,
C.
Stoeckl
,
W.
Stoeffl
,
J. S.
Stolken
,
C.
Stolz
,
E.
Storm
,
G.
Stone
,
S.
Stoupin
,
E.
Stout
,
I.
Stowers
,
R.
Strauser
,
H.
Streckart
,
J.
Streit
,
D. J.
Strozzi
,
T.
Suratwala
,
G.
Sutcliffe
,
L. J.
Suter
,
S. B.
Sutton
,
V.
Svidzinski
,
G.
Swadling
,
W.
Sweet
,
A.
Szoke
,
M.
Tabak
,
M.
Takagi
,
A.
Tambazidis
,
V.
Tang
,
M.
Taranowski
,
L. A.
Taylor
,
S.
Telford
,
W.
Theobald
,
M.
Thi
,
A.
Thomas
,
C. A.
Thomas
,
I.
Thomas
,
R.
Thomas
,
I. J.
Thompson
,
A.
Thongstisubskul
,
C. B.
Thorsness
,
G.
Tietbohl
,
R. E.
Tipton
,
M.
Tobin
,
N.
Tomlin
,
R.
Tommasini
,
A. J.
Toreja
,
J.
Torres
,
R. P. J.
Town
,
S.
Townsend
,
J.
Trenholme
,
A.
Trivelpiece
,
C.
Trosseille
,
H.
Truax
,
D.
Trummer
,
S.
Trummer
,
T.
Truong
,
D.
Tubbs
,
E. R.
Tubman
,
T.
Tunnell
,
D.
Turnbull
,
R. E.
Turner
,
M.
Ulitsky
,
R.
Upadhye
,
J. L.
Vaher
,
P.
VanArsdall
,
D.
VanBlarcom
,
M.
Vandenboomgaerde
,
R.
VanQuinlan
,
B. M.
Van Wonterghem
,
W. S.
Varnum
,
A. L.
Velikovich
,
A.
Vella
,
C. P.
Verdon
,
B.
Vermillion
,
S.
Vernon
,
R.
Vesey
,
J.
Vickers
,
R. M.
Vignes
,
M.
Visosky
,
J.
Vocke
,
P. L.
Volegov
,
S.
Vonhof
,
R.
Von Rotz
,
H. X.
Vu
,
M.
Vu
,
D.
Wall
,
J.
Wall
,
R.
Wallace
,
B.
Wallin
,
D.
Walmer
,
C. A.
Walsh
,
C. F.
Walters
,
C.
Waltz
,
A.
Wan
,
A.
Wang
,
Y.
Wang
,
J. S.
Wark
,
B. E.
Warner
,
J.
Watson
,
R. G.
Watt
,
P.
Watts
,
J.
Weaver
,
R. P.
Weaver
,
S.
Weaver
,
C. R.
Weber
,
P.
Weber
,
S. V.
Weber
,
P.
Wegner
,
B.
Welday
,
L.
Welser-Sherrill
,
K.
Weiss
,
K.
Widmann
,
G. F.
Wheeler
,
W.
Whistler
,
R. K.
White
,
H. D.
Whitley
,
P.
Whitman
,
M. E.
Wickett
,
C.
Widmayer
,
J.
Wiedwald
,
R.
Wilcox
,
S.
Wilcox
,
C.
Wild
,
B. H.
Wilde
,
C. H.
Wilde
,
K.
Wilhelmsen
,
M. D.
Wilke
,
H.
Wilkens
,
P.
Wilkins
,
S. C.
Wilks
,
E. A.
Williams
,
G. J.
Williams
,
W.
Williams
,
W. H.
Williams
,
D. C.
Wilson
,
B.
Wilson
,
E.
Wilson
,
R.
Wilson
,
S.
Winters
,
J.
Wisoff
,
M.
Wittman
,
J.
Wolfe
,
A.
Wong
,
K. W.
Wong
,
L.
Wong
,
N.
Wong
,
R.
Wood
,
D.
Woodhouse
,
J.
Woodruff
,
D. T.
Woods
,
S.
Woods
,
B. N.
Woodworth
,
E.
Wooten
,
A.
Wootton
,
K.
Work
,
J. B.
Workman
,
J.
Wright
,
M.
Wu
,
C.
Wuest
,
F. J.
Wysocki
,
H.
Xu
,
M.
Yamaguchi
,
B.
Yang
,
S. T.
Yang
,
J.
Yatabe
,
C. B.
Yeamans
,
B. C.
Yee
,
S. A.
Yi
,
L.
Yin
,
B.
Young
,
C. S.
Young
,
C. V.
Young
,
P.
Young
,
K.
Youngblood
,
R.
Zacharias
,
G.
Zagaris
,
N.
Zaitseva
,
F.
Zaka
,
F.
Ze
,
B.
Zeiger
,
M.
Zika
,
G. B.
Zimmerman
,
T.
Zobrist
,
J. D.
Zuegel
,
A. B.
Zylstra
, and
I. C. F. C.
Indirect Drive
,
Phys. Rev. Lett.
129
(
7
),
075001
(
2022
).
2.
I. C. F. C. The Indirect Drive
,
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B. B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
,
A.
Aguirre
,
D.
Aikens
,
J.
Akre
,
F.
Albert
,
M.
Albrecht
,
B. J.
Albright
,
J.
Albritton
,
J.
Alcala
,
C.
Alday
,
D. A.
Alessi
,
N.
Alexander
,
J.
Alfonso
,
N.
Alfonso
,
E.
Alger
,
S. J.
Ali
,
Z. A.
Ali
,
A.
Allen
,
W. E.
Alley
,
P.
Amala
,
P. A.
Amendt
,
P.
Amick
,
S.
Ammula
,
C.
Amorin
,
D. J.
Ampleford
,
R. W.
Anderson
,
T.
Anklam
,
N.
Antipa
,
B.
Appelbe
,
C.
Aracne-Ruddle
,
E.
Araya
,
T. N.
Archuleta
,
M.
Arend
,
P.
Arnold
,
T.
Arnold
,
A.
Arsenlis
,
J.
Asay
,
L. J.
Atherton
,
D.
Atkinson
,
R.
Atkinson
,
J. M.
Auerbach
,
B.
Austin
,
L.
Auyang
,
A. A. S.
Awwal
,
N.
Aybar
,
J.
Ayers
,
S.
Ayers
,
T.
Ayers
,
S.
Azevedo
,
B.
Bachmann
,
C. A.
Back
,
J.
Bae
,
D. S.
Bailey
,
J.
Bailey
,
T.
Baisden
,
K. L.
Baker
,
H.
Baldis
,
D.
Barber
,
M.
Barberis
,
D.
Barker
,
A.
Barnes
,
C. W.
Barnes
,
M. A.
Barrios
,
C.
Barty
,
I.
Bass
,
S. H.
Batha
,
S. H.
Baxamusa
,
G.
Bazan
,
J. K.
Beagle
,
J. B.
Beck
,
M.
Bedzyk
,
R. G.
Beeler
,
R. G.
Beeler
,
W.
Behrendt
,
L.
Belk
,
P.
Bell
,
M.
Belyaev
,
J. F.
Benage
,
G.
Bennett
,
L. R.
Benedetti
,
L. X.
Benedict
,
R. L.
Berger
,
T.
Bernat
,
L. A.
Bernstein
,
B.
Berry
,
L.
Bertolini
,
G.
Besenbruch
,
J.
Betcher
,
R.
Bettenhausen
,
R.
Betti
,
B.
Bezzerides
,
S. D.
Bhandarkar
,
R.
Bickel
,
J.
Biener
,
T.
Biesiada
,
K.
Bigelow
,
J.
Bigelow-Granillo
,
V.
Bigman
,
R. M.
Bionta
,
N. W.
Birge
,
M.
Bitter
,
A. C.
Black
,
R.
Bleile
,
D. L.
Bleuel
,
E.
Bliss
,
E.
Bliss
,
B.
Blue
,
T.
Boehly
,
K.
Boehm
,
C. D.
Boley
,
R.
Bonanno
,
E. J.
Bond
,
T.
Bond
,
M. J.
Bonino
,
M.
Borden
,
J. L.
Bourgade
,
J.
Bousquet
,
J.
Bowers
,
M.
Bowers
,
R.
Boyd
,
D.
Boyle
,
A.
Bozek
,
D. K.
Bradley
,
K. S.
Bradley
,
P. A.
Bradley
,
L.
Brannon
,
P. S.
Brantley
,
D.
Braun
,
T.
Braun
,
K.
Brienza-Larsen
,
R.
Briggs
,
T. M.
Briggs
,
J.
Britten
,
E. D.
Brooks
,
D.
Browning
,
M. W.
Bruhn
,
T. A.
Brunner
,
H.
Bruns
,
G.
Brunton
,
B.
Bryant
,
T.
Buczek
,
J.
Bude
,
L.
Buitano
,
S.
Burkhart
,
J.
Burmark
,
A.
Burnham
,
R.
Burr
,
L. E.
Busby
,
B.
Butlin
,
R.
Cabeltis
,
M.
Cable
,
W. H.
Cabot
,
B.
Cagadas
,
J.
Caggiano
,
R.
Cahayag
,
S. E.
Caldwell
,
S.
Calkins
,
D. A.
Callahan
,
J.
Calleja-Aguirre
,
L.
Camara
,
D.
Camp
,
E. M.
Campbell
,
J. H.
Campbell
,
B.
Carey
,
R.
Carey
,
K.
Carlisle
,
L.
Carlson
,
L.
Carman
,
J.
Carmichael
,
A.
Carpenter
,
C.
Carr
,
J. A.
Carrera
,
D.
Casavant
,
A.
Casey
,
D. T.
Casey
,
A.
Castillo
,
E.
Castillo
,
J. I.
Castor
,
C.
Castro
,
W.
Caughey
,
R.
Cavitt
,
J.
Celeste
,
P. M.
Celliers
,
C.
Cerjan
,
G.
Chandler
,
B.
Chang
,
C.
Chang
,
J.
Chang
,
L.
Chang
,
R.
Chapman
,
T. D.
Chapman
,
L.
Chase
,
H.
Chen
,
H.
Chen
,
K.
Chen
,
L. Y.
Chen
,
B.
Cheng
,
J.
Chittenden
,
C.
Choate
,
J.
Chou
,
R. E.
Chrien
,
M.
Chrisp
,
K.
Christensen
,
M.
Christensen
,
N. S.
Christiansen
,
A. R.
Christopherson
,
M.
Chung
,
J. A.
Church
,
A.
Clark
,
D. S.
Clark
,
K.
Clark
,
R.
Clark
,
L.
Claus
,
B.
Cline
,
J. A.
Cline
,
J. A.
Cobble
,
K.
Cochrane
,
B.
Cohen
,
S.
Cohen
,
M. R.
Collette
,
G. W.
Collins
,
L. A.
Collins
,
T. J. B.
Collins
,
A.
Conder
,
B.
Conrad
,
M.
Conyers
,
A. W.
Cook
,
D.
Cook
,
R.
Cook
,
J. C.
Cooley
,
G.
Cooper
,
T.
Cope
,
S. R.
Copeland
,
F.
Coppari
,
J.
Cortez
,
J.
Cox
,
D. H.
Crandall
,
J.
Crane
,
R. S.
Craxton
,
M.
Cray
,
A.
Crilly
,
J. W.
Crippen
,
D.
Cross
,
M.
Cuneo
,
G.
Cuotts
,
C. E.
Czajka
,
D.
Czechowicz
,
T.
Daly
,
P.
Danforth
,
C.
Danly
,
R.
Darbee
,
B.
Darlington
,
P.
Datte
,
L.
Dauffy
,
G.
Davalos
,
S.
Davidovits
,
P.
Davis
,
J.
Davis
,
S.
Dawson
,
R. D.
Day
,
T. H.
Day
,
M.
Dayton
,
C.
Deck
,
C.
Decker
,
C.
Deeney
,
K. A.
DeFriend
,
G.
Deis
,
N. D.
Delamater
,
J. A.
Delettrez
,
R.
Demaret
,
S.
Demos
,
S. M.
Dempsey
,
R.
Desjardin
,
T.
Desjardins
,
M. P.
Desjarlais
,
E. L.
Dewald
,
J.
DeYoreo
,
S.
Diaz
,
G.
Dimonte
,
T. R.
Dittrich
,
L.
Divol
,
S. N.
Dixit
,
J.
Dixon
,
A.
Do
,
E. S.
Dodd
,
D.
Dolan
,
A.
Donovan
,
M.
Donovan
,
T.
Döppner
,
C.
Dorrer
,
N.
Dorsano
,
M. R.
Douglas
,
D.
Dow
,
J.
Downie
,
E.
Downing
,
M.
Dozieres
,
V.
Draggoo
,
D.
Drake
,
R. P.
Drake
,
T.
Drake
,
G.
Dreifuerst
,
O.
Drury
,
D. F.
DuBois
,
P. F.
DuBois
,
G.
Dunham
,
M.
Durocher
,
R.
Dylla-Spears
,
A. K. L.
Dymoke-Bradshaw
,
B.
Dzenitis
,
C.
Ebbers
,
M.
Eckart
,
S.
Eddinger
,
D.
Eder
,
D.
Edgell
,
M. J.
Edwards
,
P.
Efthimion
,
J. H.
Eggert
,
B.
Ehrlich
,
P.
Ehrmann
,
S.
Elhadj
,
C.
Ellerbee
,
N. S.
Elliott
,
C. L.
Ellison
,
F.
Elsner
,
M.
Emerich
,
K.
Engelhorn
,
T.
England
,
E.
English
,
P.
Epperson
,
R.
Epstein
,
G.
Erbert
,
M. A.
Erickson
,
D. J.
Erskine
,
A.
Erlandson
,
R. J.
Espinosa
,
C.
Estes
,
K. G.
Estabrook
,
S.
Evans
,
A.
Fabyan
,
J.
Fair
,
R.
Fallejo
,
N.
Farmer
,
W. A.
Farmer
,
M.
Farrell
,
V. E.
Fatherley
,
M.
Fedorov
,
E.
Feigenbaum
,
T.
Fehrenbach
,
M.
Feit
,
B.
Felker
,
W.
Ferguson
,
J. C.
Fernandez
,
A.
Fernandez-Panella
,
S.
Fess
,
J. E.
Field
,
C. V.
Filip
,
J. R.
Fincke
,
T.
Finn
,
S. M.
Finnegan
,
R. G.
Finucane
,
M.
Fischer
,
A.
Fisher
,
J.
Fisher
,
B.
Fishler
,
D.
Fittinghoff
,
P.
Fitzsimmons
,
M.
Flegel
,
K. A.
Flippo
,
J.
Florio
,
J.
Folta
,
P.
Folta
,
L. R.
Foreman
,
C.
Forrest
,
A.
Forsman
,
J.
Fooks
,
M.
Foord
,
R.
Fortner
,
K.
Fournier
,
D. E.
Fratanduono
,
N.
Frazier
,
T.
Frazier
,
C.
Frederick
,
M. S.
Freeman
,
J.
Frenje
,
D.
Frey
,
G.
Frieders
,
S.
Friedrich
,
D. H.
Froula
,
J.
Fry
,
T.
Fuller
,
J.
Gaffney
,
S.
Gales
,
B. L.
Galloudec
,
K. K.
Le Galloudec
,
A.
Gambhir
,
L.
Gao
,
W. J.
Garbett
,
A.
Garcia
,
C.
Gates
,
E.
Gaut
,
P.
Gauthier
,
Z.
Gavin
,
J.
Gaylord
,
C. G. R.
Geddes
,
M.
Geissel
,
F.
Génin
,
J.
Georgeson
,
H.
Geppert-Kleinrath
,
V.
Geppert-Kleinrath
,
N.
Gharibyan
,
J.
Gibson
,
C.
Gibson
,
E.
Giraldez
,
V.
Glebov
,
S. G.
Glendinning
,
S.
Glenn
,
S. H.
Glenzer
,
S.
Goade
,
P. L.
Gobby
,
S. R.
Goldman
,
B.
Golick
,
M.
Gomez
,
V.
Goncharov
,
D.
Goodin
,
P.
Grabowski
,
E.
Grafil
,
P.
Graham
,
J.
Grandy
,
E.
Grasz
,
F. R.
Graziani
,
G.
Greenman
,
J. A.
Greenough
,
A.
Greenwood
,
G.
Gregori
,
T.
Green
,
J. R.
Griego
,
G. P.
Grim
,
J.
Grondalski
,
S.
Gross
,
J.
Guckian
,
N.
Guler
,
B.
Gunney
,
G.
Guss
,
S.
Haan
,
J.
Hackbarth
,
L.
Hackel
,
R.
Hackel
,
C.
Haefner
,
C.
Hagmann
,
K. D.
Hahn
,
S.
Hahn
,
B. J.
Haid
,
B. M.
Haines
,
B. M.
Hall
,
C.
Hall
,
G. N.
Hall
,
M.
Hamamoto
,
S.
Hamel
,
C. E.
Hamilton
,
B. A.
Hammel
,
J. H.
Hammer
,
G.
Hampton
,
A.
Hamza
,
A.
Handler
,
S.
Hansen
,
D.
Hanson
,
R.
Haque
,
D.
Harding
,
E.
Harding
,
J. D.
Hares
,
D. B.
Harris
,
J. A.
Harte
,
E. P.
Hartouni
,
R.
Hatarik
,
S.
Hatchett
,
A. A.
Hauer
,
M.
Havre
,
R.
Hawley
,
J.
Hayes
,
J.
Hayes
,
S.
Hayes
,
A.
Hayes-Sterbenz
,
C. A.
Haynam
,
D. A.
Haynes
,
D.
Headley
,
A.
Heal
,
J. E.
Heebner
,
S.
Heerey
,
G. M.
Heestand
,
R.
Heeter
,
N.
Hein
,
C.
Heinbockel
,
C.
Hendricks
,
M.
Henesian
,
J.
Heninger
,
J.
Henrikson
,
E. A.
Henry
,
E. B.
Herbold
,
M. R.
Hermann
,
G.
Hermes
,
J. E.
Hernandez
,
V. J.
Hernandez
,
M. C.
Herrmann
,
H. W.
Herrmann
,
O. D.
Herrera
,
D.
Hewett
,
R.
Hibbard
,
D. G.
Hicks
,
D. P.
Higginson
,
D.
Hill
,
K.
Hill
,
T.
Hilsabeck
,
D. E.
Hinkel
,
D. D.
Ho
,
V. K.
Ho
,
J. K.
Hoffer
,
N. M.
Hoffman
,
M.
Hohenberger
,
M.
Hohensee
,
W.
Hoke
,
D.
Holdener
,
F.
Holdener
,
J. P.
Holder
,
B.
Holko
,
D.
Holunga
,
J. F.
Holzrichter
,
J.
Honig
,
D.
Hoover
,
D.
Hopkins
,
L. F.
Berzak Hopkins
,
M.
Hoppe
,
M. L.
Hoppe
,
J.
Horner
,
R.
Hornung
,
C. J.
Horsfield
,
J.
Horvath
,
D.
Hotaling
,
R.
House
,
L.
Howell
,
W. W.
Hsing
,
S. X.
Hu
,
H.
Huang
,
J.
Huckins
,
H.
Hui
,
K. D.
Humbird
,
J.
Hund
,
J.
Hunt
,
O. A.
Hurricane
,
M.
Hutton
,
K. H. K.
Huynh
,
L.
Inandan
,
C.
Iglesias
,
I. V.
Igumenshchev
,
I.
Ivanovich
,
N.
Izumi
,
M.
Jackson
,
J.
Jackson
,
S. D.
Jacobs
,
G.
James
,
K.
Jancaitis
,
J.
Jarboe
,
L. C.
Jarrott
,
D.
Jasion
,
J.
Jaquez
,
J.
Jeet
,
A. E.
Jenei
,
J.
Jensen
,
J.
Jimenez
,
R.
Jimenez
,
D.
Jobe
,
Z.
Johal
,
H. M.
Johns
,
D.
Johnson
,
M. A.
Johnson
,
M.
Gatu Johnson
,
R. J.
Johnson
,
S.
Johnson
,
S. A.
Johnson
,
T.
Johnson
,
K.
Jones
,
O.
Jones
,
M.
Jones
,
R.
Jorge
,
H. J.
Jorgenson
,
M.
Julian
,
B. I.
Jun
,
R.
Jungquist
,
J.
Kaae
,
N.
Kabadi
,
D.
Kaczala
,
D.
Kalantar
,
K.
Kangas
,
V. V.
Karasiev
,
M.
Karasik
,
V.
Karpenko
,
A.
Kasarky
,
K.
Kasper
,
R.
Kauffman
,
M. I.
Kaufman
,
C.
Keane
,
L.
Keaty
,
L.
Kegelmeyer
,
P. A.
Keiter
,
P. A.
Kellett
,
J.
Kellogg
,
J. H.
Kelly
,
S.
Kemic
,
A. J.
Kemp
,
G. E.
Kemp
,
G. D.
Kerbel
,
D.
Kershaw
,
S. M.
Kerr
,
T. J.
Kessler
,
M. H.
Key
,
S. F.
Khan
,
H.
Khater
,
C.
Kiikka
,
J.
Kilkenny
,
Y.
Kim
,
Y. J.
Kim
,
J.
Kimko
,
M.
Kimmel
,
J. M.
Kindel
,
J.
King
,
R. K.
Kirkwood
,
L.
Klaus
,
D.
Klem
,
J. L.
Kline
,
J.
Klingmann
,
G.
Kluth
,
P.
Knapp
,
J.
Knauer
,
J.
Knipping
,
M.
Knudson
,
D.
Kobs
,
J.
Koch
,
T.
Kohut
,
C.
Kong
,
J. M.
Koning
,
P.
Koning
,
S.
Konior
,
H.
Kornblum
,
L. B.
Kot
,
B.
Kozioziemski
,
M.
Kozlowski
,
P. M.
Kozlowski
,
J.
Krammen
,
N. S.
Krasheninnikova
,
C. M.
Krauland
,
B.
Kraus
,
W.
Krauser
,
J. D.
Kress
,
A. L.
Kritcher
,
E.
Krieger
,
J. J.
Kroll
,
W. L.
Kruer
,
M. K. G.
Kruse
,
S.
Kucheyev
,
M.
Kumbera
,
S.
Kumpan
,
J.
Kunimune
,
E.
Kur
,
B.
Kustowski
,
T. J. T.
Kwan
,
G. A.
Kyrala
,
S.
Laffite
,
M.
Lafon
,
K.
LaFortune
,
L.
Lagin
,
B.
Lahmann
,
B.
Lairson
,
O. L.
Landen
,
T.
Land
,
M.
Lane
,
D.
Laney
,
A. B.
Langdon
,
J.
Langenbrunner
,
S. H.
Langer
,
A.
Langro
,
N. E.
Lanier
,
T. E.
Lanier
,
D.
Larson
,
B. F.
Lasinski
,
D.
Lassle
,
D.
LaTray
,
G.
Lau
,
N.
Lau
,
C.
Laumann
,
A.
Laurence
,
T. A.
Laurence
,
J.
Lawson
,
H. P.
Le
,
R. R.
Leach
,
L.
Leal
,
A.
Leatherland
,
K.
LeChien
,
B.
Lechleiter
,
A.
Lee
,
M.
Lee
,
T.
Lee
,
R. J.
Leeper
,
E.
Lefebvre
,
J. P.
Leidinger
,
B.
LeMire
,
R. W.
Lemke
,
N. C.
Lemos
,
S.
Le Pape
,
R.
Lerche
,
S.
Lerner
,
S.
Letts
,
K.
Levedahl
,
T.
Lewis
,
C. K.
Li
,
H.
Li
,
J.
Li
,
W.
Liao
,
Z. M.
Liao
,
D.
Liedahl
,
J.
Liebman
,
G.
Lindford
,
E. L.
Lindman
,
J. D.
Lindl
,
H.
Loey
,
R. A.
London
,
F.
Long
,
E. N.
Loomis
,
F. E.
Lopez
,
H.
Lopez
,
E.
Losbanos
,
S.
Loucks
,
R.
Lowe-Webb
,
E.
Lundgren
,
A. P.
Ludwigsen
,
R.
Luo
,
J.
Lusk
,
R.
Lyons
,
T.
Ma
,
Y.
Macallop
,
M. J.
MacDonald
,
B. J.
MacGowan
,
J. M.
Mack
,
A. J.
Mackinnon
,
S. A.
MacLaren
,
A. G.
MacPhee
,
G. R.
Magelssen
,
J.
Magoon
,
R. M.
Malone
,
T.
Malsbury
,
R.
Managan
,
R.
Mancini
,
K.
Manes
,
D.
Maney
,
D.
Manha
,
O. M.
Mannion
,
A. M.
Manuel
,
M. J. E.
Manuel
,
E.
Mapoles
,
G.
Mara
,
T.
Marcotte
,
E.
Marin
,
M. M.
Marinak
,
D. A.
Mariscal
,
E. F.
Mariscal
,
E. V.
Marley
,
J. A.
Marozas
,
R.
Marquez
,
C. D.
Marshall
,
F. J.
Marshall
,
M.
Marshall
,
S.
Marshall
,
J.
Marticorena
,
J. I.
Martinez
,
D.
Martinez
,
I.
Maslennikov
,
D.
Mason
,
R. J.
Mason
,
L.
Masse
,
W.
Massey
,
P. E.
Masson-Laborde
,
N. D.
Masters
,
D.
Mathisen
,
E.
Mathison
,
J.
Matone
,
M. J.
Matthews
,
C.
Mattoon
,
T. R.
Mattsson
,
K.
Matzen
,
C. W.
Mauche
,
M.
Mauldin
,
T.
McAbee
,
M.
McBurney
,
T.
McCarville
,
R. L.
McCrory
,
A. M.
McEvoy
,
C.
McGuffey
,
M.
McInnis
,
P.
McKenty
,
M. S.
McKinley
,
J. B.
McLeod
,
A.
McPherson
,
B.
McQuillan
,
M.
Meamber
,
K. D.
Meaney
,
N. B.
Meezan
,
R.
Meissner
,
T. A.
Mehlhorn
,
N. C.
Mehta
,
J.
Menapace
,
F. E.
Merrill
,
B. T.
Merritt
,
E. C.
Merritt
,
D. D.
Meyerhofer
,
S.
Mezyk
,
R. J.
Mich
,
P. A.
Michel
,
D.
Milam
,
C.
Miller
,
D.
Miller
,
D. S.
Miller
,
E.
Miller
,
E. K.
Miller
,
J.
Miller
,
M.
Miller
,
P. E.
Miller
,
T.
Miller
,
W.
Miller
,
V.
Miller-Kamm
,
M.
Millot
,
J. L.
Milovich
,
P.
Minner
,
J. L.
Miquel
,
S.
Mitchell
,
K.
Molvig
,
R. C.
Montesanti
,
D. S.
Montgomery
,
M.
Monticelli
,
A.
Montoya
,
J. D.
Moody
,
A. S.
Moore
,
E.
Moore
,
M.
Moran
,
J. C.
Moreno
,
K.
Moreno
,
B. E.
Morgan
,
T.
Morrow
,
J. W.
Morton
,
E.
Moses
,
K.
Moy
,
R.
Muir
,
M. S.
Murillo
,
J. E.
Murray
,
J. R.
Murray
,
D. H.
Munro
,
T. J.
Murphy
,
F. M.
Munteanu
,
J.
Nafziger
,
T.
Nagayama
,
S. R.
Nagel
,
R.
Nast
,
R. A.
Negres
,
A.
Nelson
,
D.
Nelson
,
J.
Nelson
,
S.
Nelson
,
S.
Nemethy
,
P.
Neumayer
,
K.
Newman
,
M.
Newton
,
H.
Nguyen
,
J. M. G.
Di Nicola
,
P. Di
Nicola
,
C.
Niemann
,
A.
Nikroo
,
P. M.
Nilson
,
A.
Nobile
,
V.
Noorai
,
R. C.
Nora
,
M.
Norton
,
M.
Nostrand
,
V.
Note
,
S.
Novell
,
P. F.
Nowak
,
A.
Nunez
,
R. A.
Nyholm
,
M.
O'Brien
,
A.
Oceguera
,
J. A.
Oertel
,
A. L.
Oesterle
,
J.
Okui
,
B.
Olejniczak
,
J.
Oliveira
,
P.
Olsen
,
B.
Olson
,
K.
Olson
,
R. E.
Olson
,
Y. P.
Opachich
,
N.
Orsi
,
C. D.
Orth
,
M.
Owen
,
S.
Padalino
,
E.
Padilla
,
R.
Paguio
,
S.
Paguio
,
J.
Paisner
,
S.
Pajoom
,
A.
Pak
,
S.
Palaniyappan
,
K.
Palma
,
T.
Pannell
,
F.
Papp
,
D.
Paras
,
T.
Parham
,
H. S.
Park
,
A.
Pasternak
,
S.
Patankar
,
M. V.
Patel
,
P. K.
Patel
,
R.
Patterson
,
S.
Patterson
,
B.
Paul
,
M.
Paul
,
E.
Pauli
,
O. T.
Pearce
,
J.
Pearcy
,
A.
Pedretti
,
B.
Pedrotti
,
A.
Peer
,
L. J.
Pelz
,
B.
Penetrante
,
J.
Penner
,
A.
Perez
,
L. J.
Perkins
,
E.
Pernice
,
T. S.
Perry
,
S.
Person
,
D.
Petersen
,
T.
Petersen
,
D. L.
Peterson
,
E. B.
Peterson
,
J. E.
Peterson
,
J. L.
Peterson
,
K.
Peterson
,
R. R.
Peterson
,
R. D.
Petrasso
,
F.
Philippe
,
D.
Phillion
,
T. J.
Phipps
,
E.
Piceno
,
L.
Pickworth
,
Y.
Ping
,
J.
Pino
,
K.
Piston
,
R.
Plummer
,
G. D.
Pollack
,
S. M.
Pollaine
,
B. B.
Pollock
,
D.
Ponce
,
J.
Ponce
,
J.
Pontelandolfo
,
J. L.
Porter
,
J.
Post
,
O.
Poujade
,
C.
Powell
,
H.
Powell
,
G.
Power
,
M.
Pozulp
,
M.
Prantil
,
M.
Prasad
,
S.
Pratuch
,
S.
Price
,
K.
Primdahl
,
S.
Prisbrey
,
R.
Procassini
,
A.
Pruyne
,
B.
Pudliner
,
S. R.
Qiu
,
K.
Quan
,
M.
Quinn
,
J.
Quintenz
,
P. B.
Radha
,
F.
Rainer
,
J. E.
Ralph
,
K. S.
Raman
,
R.
Raman
,
P. W.
Rambo
,
S.
Rana
,
A.
Randewich
,
D.
Rardin
,
M.
Ratledge
,
N.
Ravelo
,
F.
Ravizza
,
M.
Rayce
,
A.
Raymond
,
B.
Raymond
,
B.
Reed
,
C.
Reed
,
S.
Regan
,
B.
Reichelt
,
V.
Reis
,
S.
Reisdorf
,
V.
Rekow
,
B. A.
Remington
,
A.
Rendon
,
W.
Requieron
,
M.
Rever
,
H.
Reynolds
,
J.
Reynolds
,
J.
Rhodes
,
M.
Rhodes
,
M. C.
Richardson
,
B.
Rice
,
N. G.
Rice
,
R.
Rieben
,
A.
Rigatti
,
S.
Riggs
,
H. G.
Rinderknecht
,
K.
Ring
,
B.
Riordan
,
R.
Riquier
,
C.
Rivers
,
D.
Roberts
,
V.
Roberts
,
G.
Robertson
,
H. F.
Robey
,
J.
Robles
,
P.
Rocha
,
G.
Rochau
,
J.
Rodriguez
,
S.
Rodriguez
,
M. D.
Rosen
,
M.
Rosenberg
,
G.
Ross
,
J. S.
Ross
,
P.
Ross
,
J.
Rouse
,
D.
Rovang
,
A. M.
Rubenchik
,
M. S.
Rubery
,
C. L.
Ruiz
,
M.
Rushford
,
B.
Russ
,
J. R.
Rygg
,
B. S.
Ryujin
,
R. A.
Sacks
,
R. F.
Sacks
,
K.
Saito
,
T.
Salmon
,
J. D.
Salmonson
,
J.
Sanchez
,
S.
Samuelson
,
M.
Sanchez
,
C.
Sangster
,
A.
Saroyan
,
J.
Sater
,
A.
Satsangi
,
S.
Sauers
,
R.
Saunders
,
J. P.
Sauppe
,
R.
Sawicki
,
D.
Sayre
,
M.
Scanlan
,
K.
Schaffers
,
G. T.
Schappert
,
S.
Schiaffino
,
D. J.
Schlossberg
,
D. W.
Schmidt
,
P. F.
Schmit
,
J. M.
Smidt
,
D. H. G.
Schneider
,
M. B.
Schneider
,
R.
Schneider
,
M.
Schoff
,
M.
Schollmeier
,
C. R.
Schroeder
,
S. E.
Schrauth
,
H. A.
Scott
,
I.
Scott
,
J. M.
Scott
,
R. H. H.
Scott
,
C. R.
Scullard
,
T.
Sedillo
,
F. H.
Seguin
,
W.
Seka
,
J.
Senecal
,
S. M.
Sepke
,
L.
Seppala
,
K.
Sequoia
,
J.
Severyn
,
J. M.
Sevier
,
N.
Sewell
,
S.
Seznec
,
R. C.
Shah
,
J.
Shamlian
,
D.
Shaughnessy
,
M.
Shaw
,
R.
Shaw
,
C.
Shearer
,
R.
Shelton
,
N.
Shen
,
M. W.
Sherlock
,
A. I.
Shestakov
,
E. L.
Shi
,
S. J.
Shin
,
N.
Shingleton
,
W.
Shmayda
,
M.
Shor
,
M.
Shoup
,
C.
Shuldberg
,
L.
Siegel
,
F. J.
Silva
,
A. N.
Simakov
,
B. T.
Sims
,
D.
Sinars
,
P.
Singh
,
H.
Sio
,
K.
Skulina
,
S.
Skupsky
,
S.
Slutz
,
M.
Sluyter
,
V. A.
Smalyuk
,
D.
Smauley
,
R. M.
Smeltser
,
C.
Smith
,
I.
Smith
,
J.
Smith
,
L.
Smith
,
R.
Smith
,
R.
Smith
,
M.
Schölmerich
,
R.
Sohn
,
S.
Sommer
,
C.
Sorce
,
M.
Sorem
,
J. M.
Soures
,
M. L.
Spaeth
,
B. K.
Spears
,
S.
Speas
,
D.
Speck
,
R.
Speck
,
J.
Spears
,
T.
Spinka
,
P. T.
Springer
,
M.
Stadermann
,
B.
Stahl
,
J.
Stahoviak
,
J.
Stanley
,
L. G.
Stanton
,
R.
Steele
,
W.
Steele
,
D.
Steinman
,
R.
Stemke
,
R.
Stephens
,
S.
Sterbenz
,
P.
Sterne
,
D.
Stevens
,
J.
Stevers
,
C. H.
Still
,
C.
Stoeckl
,
W.
Stoeffl
,
J. S.
Stolken
,
C.
Stolz
,
E.
Storm
,
G.
Stone
,
S.
Stoupin
,
E.
Stout
,
I.
Stowers
,
R.
Strauser
,
H.
Streckart
,
J.
Streit
,
D. J.
Strozzi
,
J.
Stutz
,
L.
Summers
,
T.
Suratwala
,
G.
Sutcliffe
,
L. J.
Suter
,
S. B.
Sutton
,
V.
Svidzinski
,
G.
Swadling
,
W.
Sweet
,
A.
Szoke
,
M.
Tabak
,
M.
Takagi
,
A.
Tambazidis
,
V.
Tang
,
M.
Taranowski
,
L. A.
Taylor
,
S.
Telford
,
W.
Theobald
,
M.
Thi
,
A.
Thomas
,
C. A.
Thomas
,
I.
Thomas
,
R.
Thomas
,
I. J.
Thompson
,
A.
Thongstisubskul
,
C. B.
Thorsness
,
G.
Tietbohl
,
R. E.
Tipton
,
M.
Tobin
,
N.
Tomlin
,
R.
Tommasini
,
A. J.
Toreja
,
J.
Torres
,
R. P. J.
Town
,
S.
Townsend
,
J.
Trenholme
,
A.
Trivelpiece
,
C.
Trosseille
,
H.
Truax
,
D.
Trummer
,
S.
Trummer
,
T.
Truong
,
D.
Tubbs
,
E. R.
Tubman
,
T.
Tunnell
,
D.
Turnbull
,
R. E.
Turner
,
M.
Ulitsky
,
R.
Upadhye
,
J. L.
Vaher
,
P.
VanArsdall
,
D.
VanBlarcom
,
M.
Vandenboomgaerde
,
R.
VanQuinlan
,
B. M.
Van Wonterghem
,
W. S.
Varnum
,
A. L.
Velikovich
,
A.
Vella
,
C. P.
Verdon
,
B.
Vermillion
,
S.
Vernon
,
R.
Vesey
,
J.
Vickers
,
R. M.
Vignes
,
M.
Visosky
,
J.
Vocke
,
P. L.
Volegov
,
S.
Vonhof
,
R.
Von Rotz
,
H. X.
Vu
,
M.
Vu
,
D.
Wall
,
J.
Wall
,
R.
Wallace
,
B.
Wallin
,
D.
Walmer
,
C. A.
Walsh
,
C. F.
Walters
,
C.
Waltz
,
A.
Wan
,
A.
Wang
,
Y.
Wang
,
J. S.
Wark
,
B. E.
Warner
,
J.
Watson
,
R. G.
Watt
,
P.
Watts
,
J.
Weaver
,
R. P.
Weaver
,
S.
Weaver
,
C. R.
Weber
,
P.
Weber
,
S. V.
Weber
,
P.
Wegner
,
B.
Welday
,
L.
Welser-Sherrill
,
K.
Weiss
,
K. B.
Wharton
,
G. F.
Wheeler
,
W.
Whistler
,
R. K.
White
,
H. D.
Whitley
,
P.
Whitman
,
M. E.
Wickett
,
K.
Widmann
,
C.
Widmayer
,
J.
Wiedwald
,
R.
Wilcox
,
S.
Wilcox
,
C.
Wild
,
B. H.
Wilde
,
C. H.
Wilde
,
K.
Wilhelmsen
,
M. D.
Wilke
,
H.
Wilkens
,
P.
Wilkins
,
S. C.
Wilks
,
E. A.
Williams
,
G. J.
Williams
,
W.
Williams
,
W. H.
Williams
,
D. C.
Wilson
,
B.
Wilson
,
E.
Wilson
,
R.
Wilson
,
S.
Winters
,
P. J.
Wisoff
,
M.
Wittman
,
J.
Wolfe
,
A.
Wong
,
K. W.
Wong
,
L.
Wong
,
N.
Wong
,
R.
Wood
,
D.
Woodhouse
,
J.
Woodruff
,
D. T.
Woods
,
S.
Woods
,
B. N.
Woodworth
,
E.
Wooten
,
A.
Wootton
,
K.
Work
,
J. B.
Workman
,
J.
Wright
,
M.
Wu
,
C.
Wuest
,
F. J.
Wysocki
,
H.
Xu
,
M.
Yamaguchi
,
B.
Yang
,
S. T.
Yang
,
J.
Yatabe
,
C. B.
Yeamans
,
B. C.
Yee
,
S. A.
Yi
,
L.
Yin
,
B.
Young
,
C. S.
Young
,
C. V.
Young
,
P.
Young
,
K.
Youngblood
,
J.
Yu
,
R.
Zacharias
,
G.
Zagaris
,
N.
Zaitseva
,
F.
Zaka
,
F.
Ze
,
B.
Zeiger
,
M.
Zika
,
G. B.
Zimmerman
,
T.
Zobrist
,
J. D.
Zuegel
, and
A. B.
Zylstra
,
Phys. Rev. Lett.
132
(
6
),
065102
(
2024
).
3.
N. B.
Meezan
,
M. J.
Edwards
,
O. A.
Hurricane
,
P. K.
Patel
,
D. A.
Callahan
,
W. W.
Hsing
,
R. P. J.
Town
,
F.
Albert
,
P. A.
Amendt
,
L. F.
Berzak Hopkins
,
D. K.
Bradley
,
D. T.
Casey
,
D. S.
Clark
,
E. L.
Dewald
,
T. R.
Dittrich
,
L.
Divol
,
T.
Döppner
,
J. E.
Field
,
S. W.
Haan
,
G. N.
Hall
,
B. A.
Hammel
,
D. E.
Hinkel
,
D. D.
Ho
,
M.
Hohenberger
,
N.
Izumi
,
O. S.
Jones
,
S. F.
Khan
,
J. L.
Kline
,
A. L.
Kritcher
,
O. L.
Landen
,
S.
LePape
,
T.
Ma
,
A. J.
MacKinnon
,
A. G.
MacPhee
,
L.
Masse
,
J. L.
Milovich
,
A.
Nikroo
,
A.
Pak
,
H. S.
Park
,
J. L.
Peterson
,
H. F.
Robey
,
J. S.
Ross
,
J. D.
Salmonson
,
V. A.
Smalyuk
,
B. K.
Spears
,
M.
Stadermann
,
L. J.
Suter
,
C. A.
Thomas
,
R.
Tommasini
,
D. P.
Turnbull
, and
C. R.
Weber
,
Plasma Phys. Controlled Fusion
59
(
1
),
014021
(
2017
).
4.
National Academy of Sciences Engineering and Medecine
,
Plasma Science: Enabling Technology, Sustainability, Security, and Exploration
(
The National Academies Press
,
Washington, DC
,
2021
).
5.
National Academy of Sciences Engineering and Medecine
,
Fundamental Research in High Energy Density Science
(
The National Academies Press
,
Washington, DC
,
2023
).
6.
C. J.
Cerjan
,
L.
Bernstein
,
L. B.
Hopkins
,
R. M.
Bionta
,
D. L.
Bleuel
,
J. A.
Caggiano
,
W. S.
Cassata
,
C. R.
Brune
,
D.
Fittinghoff
,
J.
Frenje
,
M.
Gatu-Johnson
,
N.
Gharibyan
,
G.
Grim
,
C.
Hagmann
,
A.
Hamza
,
R.
Hatarik
,
E. P.
Hartouni
,
E. A.
Henry
,
H.
Herrmann
,
N.
Izumi
,
D. H.
Kalantar
,
H. Y.
Khater
,
Y.
Kim
,
A.
Kritcher
,
Y. A.
Litvinov
,
F.
Merrill
,
K.
Moody
,
P.
Neumayer
,
A.
Ratkiewicz
,
H. G.
Rinderknecht
,
D.
Sayre
,
D.
Shaughnessy
,
B.
Spears
,
W.
Stoeffl
,
R.
Tommasini
,
C.
Yeamans
,
C.
Velsko
,
M.
Wiescher
,
M.
Couder
,
A.
Zylstra
, and
D.
Schneider
,
J. Phys. G: Nucl. Part. Phys.
45
(
3
),
033003
(
2018
).
7.
J.
Burggraf
and
A.
Zylstra
,
Front. Phys.
10
,
1
(
2022
).
8.
D. A.
Shaughnessy
,
N.
Gharibyan
,
K. J.
Moody
,
J. D.
Despotopulos
,
P. M.
Grant
,
C. B.
Yeamans
,
L.
Berzak Hopkins
,
C. J.
Cerjan
,
D. H. G.
Schneider
, and
S.
Faye
,
J. Phys.: Conf. Ser.
717
(
1
),
012080
(
2016
).
9.
J. D.
Despotopulos
,
N.
Gharibyan
,
K. J.
Moody
,
C.
Yeamans
,
C.
Velsko
, and
D. A.
Shaughnessy
,
Front. Phys.
10
,
01
(
2022
).
10.
National Academy of Sciences Engineering and Medecine
,
An Assessment of the Prospects for Inertial Fusion Energy
(
The National Academies Press
,
Washington, DC
,
2013
).
11.
M. S.
Rubery
,
M. D.
Rosen
,
N.
Aybar
,
O. L.
Landen
,
L.
Divol
,
C. V.
Young
,
C.
Weber
,
J.
Hammer
,
J. D.
Moody
,
A. S.
Moore
,
A. L.
Kritcher
,
A. B.
Zylstra
,
O.
Hurricane
,
A. E.
Pak
,
S.
MacLaren
,
G.
Zimmerman
,
J.
Harte
, and
T.
Woods
,
Phys. Rev. Lett.
132
(
6
),
065104
(
2024
).
12.
National Academy of Sciences Engineering and Medecine
,
Frontiers in High Energy Density Physics: The X-Games of Contemporary Science
(
The National Academies Press
,
Washington, DC
,
2003
).
13.
M. L.
Spaeth
,
K. R.
Manes
,
D. H.
Kalantar
,
P. E.
Miller
,
J. E.
Heebner
,
E. S.
Bliss
,
D. R.
Spec
,
T. G.
Parham
,
P. K.
Whitman
,
P. J.
Wegner
,
P. A.
Baisden
,
J. A.
Menapace
,
M. W.
Bowers
,
S. J.
Cohen
,
T. I.
Suratwala
,
J. M.
Di Nicola
,
M. A.
Newton
,
J. J.
Adams
,
J. B.
Trenholme
,
R. G.
Finucane
,
R. E.
Bonanno
,
D. C.
Rardin
,
P. A.
Arnold
,
S. N.
Dixit
,
G. V.
Erbert
,
A. C.
Erlandson
,
J. E.
Fair
,
E.
Feigenbaum
,
W. H.
Gourdin
,
R. A.
Hawley
,
J.
Honig
,
R. K.
House
,
K. S.
Jancaitis
,
K. N.
LaFortune
,
D. W.
Larson
,
B. J.
Le Galloudec
,
J. D.
Lindl
,
B. J.
MacGowan
,
C. D.
Marshall
,
K. P.
McCandless
,
R. W.
McCracken
,
R. C.
Montesanti
,
E. I.
Moses
,
M. C.
Nostrand
,
J. A.
Pryatel
,
V. S.
Roberts
,
S. B.
Rodriguez
,
A. W.
Rowe
,
R. A.
Sacks
,
J. T.
Salmon
,
M. J.
Shaw
,
S.
Sommer
,
C. J.
Stolz
,
G. L.
Tietbohl
,
C. C.
Widmayer
, and
R.
Zacharias
,
Fusion Sci. Technol.
69
(
1
),
25
145
(
2016
).
14.
M. L.
Spaeth
,
K. R.
Manes
,
M.
Bowers
,
P.
Celliers
,
J. M. D.
Nicola
,
P. D.
Nicola
,
S.
Dixit
,
G.
Erbert
,
J.
Heebner
,
D.
Kalantar
,
O.
Landen
,
B.
MacGowan
,
B.
Van Wonterghem
,
P.
Wegner
,
C.
Widmayer
, and
S.
Yang
,
Fusion Sci. Technol.
69
(
1
),
366
(
2016
).