The Editors and the Members of the Editorial Board of Physics of Plasmas are proud to introduce the annual Early Career Collection. Beginning in 2022, top papers from all areas of plasma physics research and authored by early career researchers will be selected by the Editorial Board for recognition and inclusion in the annual Early Career Collection. To be eligible, the first author must be within five years of their Ph.D. defense date (not including career breaks such as family or medical leave) upon the time of the manuscript submission. Student authors may be included, and eligible authors indicate their willingness to be considered for the annual Special Collection during the submission process.

The 2022 Special Collection of Early Career papers includes 29 papers in all ten of the topical sections of Physics of Plasmas: Basic Plasma Phenomena, Waves, Instabilities (four papers); Nonlinear Phenomena, Turbulence, Transport (two papers); Magnetically Confined Plasmas, Heating, Confinement (five papers); Inertially Confined Plasmas, Dense Plasmas, Equations of State (five papers); Heliospheric and Astrophysical Plasmas (two papers); Plasma-Based Accelerators, Beams, Radiation Generation (two papers); Radiation: Emission, Absorption, Transport (one paper); Low-Temperature Plasmas, Plasma Applications, Plasma Sources, Sheaths (three papers); Dusty Plasmas (two papers); and Numerical Methods, Verification and Validation in Plasma Physics (three papers). These early career papers include six Featured articles, six Editor's Picks, and authors located in ten countries: Canada, China, France, Germany, India, Japan, the Netherlands, Switzerland, the United Kingdom, and the United States.

Please join us in congratulating the following early career authors: Duncan Barlow (University of Warwick, United Kingdom),1 Gayatri Barsagade (Institute for Plasma Research, Gandhinagar, India),2 Rachel Bielajew (MIT Plasma Science and Fusion Center),3 David Blackman (University of California, San Diego),4 Timo Bogaarts (Eindhoven University of Technology, The Netherlands),5 Neeraj Chaubey (University of Iowa),6 Alison Christopherson (Lawrence Livermore National Laboratory),7 Seth Davidovits (Lawrence Livermore National Laboratory),8 Sebastian De Pascuale (Oak Ridge National Laboratory),9 Baptiste Frei [Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland],10 Keiji Fujita (National Institute for Fusion Science, Japan),11 Maurizio Giacomin [Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland],12 Peter Heuer (Laboratory for Laser Energetics, University of Rochester),13 Sarah Horvath (University of Iowa, Iowa City),14 Elizabeth Kautz (Pacific Northwest National Laboratory),15 Scott Karbashewski (University of California, Berkeley),16 Krishan Kumar (Institute for Plasma Research, Gandhinagar, India),17 Alejandro Alvarez Laguna [Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, Institut Polytechnique de Paris, France],18 Mate Lampert (Princeton Plasma Physics Laboratory),19 Andrew Longman (Lawrence Livermore National Laboratory),20 Julian Lütgert (Institut für Physik, Universität Rostock, Germany),21 Ian Ochs (Princeton University),22 Renato Perillo (University of California, San Diego),23 James Sadler (Lawrence Livermore National Laboratory),24 Chen Shi (University of California, Los Angeles),25 Jaron Shrock (University of Maryland, College Park),26 Xiaoliang Wang (University of Science and Technology of China, Hefei, China),27 David Yager-Elorriaga (Sandia National Laboratories),28 and Min-Gu Yoo (Princeton Plasma Physics Laboratory).29 

The authors have no conflicts to disclose.

1.
D.
Barlow
,
T.
Goffrey
,
K.
Bennett
,
R. H. H.
Scott
,
K.
Glize
,
W.
Theobald
,
K.
Anderson
,
A. A.
Solodov
,
M. J.
Rosenberg
,
M.
Hohenberger
,
N. C.
Woolsey
,
P.
Bradford
,
M.
Khan
, and
T. D.
Arber
, “
Role of hot electrons in shock ignition constrained by experiment at the National Ignition Facility
,”
Phys. Plasmas
29
,
082704
(
2022
).
2.
G.
Barsagade
and
D.
Sharma
, “
Quasi-longitudinal propagation of nonlinear whistlers with steep electrostatic fluctuations
,”
Phys. Plasmas
29
,
112104
(
2022
).
3.
R.
Bielajew
,
G. D.
Conway
,
M.
Griener
,
T.
Happel
,
K.
Höfler
,
N. T.
Howard
,
A. E.
Hubbard
,
W.
McCarthy
,
P. A.
Molina Cabrera
,
T.
Nishizawa
,
P.
Rodriguez-Fernandez
,
D.
Silvagni
,
B.
Vanovac
,
D.
Wendler
,
C.
Yoo
,
A. E.
White
, and
ASDEX Upgrade Team
, “
Edge turbulence measurements in L-mode and I-mode at ASDEX Upgrade
,”
Phys. Plasmas
29
,
052504
(
2022
).
4.
D. R.
Blackman
,
R.
Nuter
,
P.
Korneev
,
A.
Arefiev
, and
V. T.
Tikhonchuk
, “
Kinetic phenomena of helical plasma waves with orbital angular momentum
,”
Phys. Plasmas
29
,
072105
(
2022
).
5.
T. J.
Bogaarts
,
M.
Hoelzl
,
G. T. A.
Huijsmans
,
X.
Wang
, and
JOREK Team
, “
Development and application of a hybrid MHD-kinetic model in JOREK
,”
Phys. Plasmas
29
,
122501
(
2022
).
6.
N.
Chaubey
and
J.
Goree
, “
Coulomb expansion of a thin dust cloud observed experimentally under afterglow plasma conditions
,”
Phys. Plasmas
29
,
113705
(
2022
).
7.
A. R.
Christopherson
,
R.
Betti
,
C. J.
Forrest
,
J.
Howard
,
W.
Theobald
,
E. M.
Campbell
,
J.
Delettrez
,
M. J.
Rosenberg
,
A. A.
Solodov
,
C.
Stoeckl
,
D.
Patel
,
V.
Gopalaswamy
,
D.
Cao
,
J.
Peebles
,
D.
Edgell
,
W.
Seka
,
R.
Epstein
,
W.
Scullin
,
P. B.
Radha
,
M. S.
Wei
,
S. P.
Regan
,
M.
Gatu Johnson
, and
R.
Simpson
, “
Inferences of hot electron preheat and its spatial distribution in OMEGA direct drive implosions
,”
Phys. Plasmas
29
,
122703
(
2022
).
8.
S.
Davidovits
,
C. R.
Weber
, and
D. S.
Clark
, “
Modeling ablator grain structure impacts in ICF implosions
,”
Phys. Plasmas
29
,
112708
(
2022
).
9.
S.
De Pascuale
,
D. L.
Green
, and
J. D.
Lore
, “
Data-driven linear time advance operators for the acceleration of plasma physics simulation
,”
Phys. Plasmas
29
,
113903
(
2022
).
10.
B. J.
Frei
,
S.
Ernst
, and
P.
Ricci
, “
Numerical implementation of the improved Sugama collision operator using a moment approach
,”
Phys. Plasmas
29
,
093902
(
2022
).
11.
K.
Fujita
and
S.
Satake
, “
How to evaluate neoclassical transport coefficients by a single δf simulation
,”
Phys. Plasmas
29
,
123903
(
2022
).
12.
M.
Giacomin
and
P.
Ricci
, “
Turbulent transport regimes in the tokamak boundary and operational limits
,”
Phys. Plasmas
29
,
062303
(
2022
).
13.
P. V.
Heuer
,
L. S.
Leal
,
J. R.
Davies
,
E. C.
Hansen
,
D. H.
Barnak
,
J. L.
Peebles
,
F.
García-Rubio
,
B.
Pollock
,
J.
Moody
,
A.
Birkel
, and
F. H.
Seguin
, “
Diagnosing magnetic fields in cylindrical implosions with oblique proton radiography
,”
Phys. Plasmas
29
,
072708
(
2022
).
14.
S. A.
Horvath
,
G. G.
Howes
, and
A. J.
McCubbin
, “
Observing particle energization above the Nyquist frequency: An application of the field-particle correlation technique
,”
Phys. Plasmas
29
,
062901
(
2022
).
15.
E. J.
Kautz
,
M. C.
Phillips
,
A.
Zelenyuk
, and
S. S.
Harilal
, “
Oxidation in laser-generated metal plumes
,”
Phys. Plasmas
29
,
053509
(
2022
).
16.
S.
Karbashewski
,
R. D.
Sydora
,
B.
Van Compernolle
,
T.
Simala-Grant
, and
M. J.
Poulos
, “
Magnetized plasma pressure filaments: Analysis of chaotic and intermittent transport events driven by drift-Alfvén modes
,”
Phys. Plasmas
29
,
112309
(
2022
).
17.
K.
Kumar
,
P.
Bandyopadhyay
,
S.
Singh
, and
A.
Sen
, “
Trapping of waves in a flowing dusty plasma
,”
Phys. Plasmas
29
,
123703
(
2022
).
18.
A.
Alvarez Laguna
,
B.
Esteves
,
A.
Bourdon
, and
P.
Chabert
, “
A regularized high-order moment model to capture non-Maxwellian electron energy distribution function effects in partially ionized plasmas
,”
Phys. Plasmas
29
,
083507
(
2022
).
19.
M.
Lampert
,
A.
Diallo
,
J. R.
Myra
, and
S. J.
Zweben
, “
Internal rotation of ELM filaments on NSTX
,”
Phys. Plasmas
29
,
102502
(
2022
).
20.
A.
Longman
and
R.
Fedosejevs
, “
Modeling of high intensity orbital angular momentum beams for laser–plasma interactions
,”
Phys. Plasmas
29
,
063109
(
2022
).
21.
J.
Lütgert
,
M.
Bethkenhagen
,
B.
Bachmann
,
L.
Divol
,
D. O.
Gericke
,
S. H.
Glenzer
,
G. N.
Hall
,
N.
Izumi
,
S. F.
Khan
,
O. L.
Landen
,
S. A.
MacLaren
,
L.
Masse
,
R.
Redmer
,
M.
Schörner
,
M. O.
Schölmerich
,
S.
Schumacher
,
N. R.
Shaffer
,
C. E.
Starrett
,
P. A.
Sterne
,
C.
Trosseille
,
T.
Döppner
, and
D.
Kraus
, “
Platform for probing radiation transport properties of hydrogen at conditions found in the deep interiors of red dwarfs
,”
Phys. Plasmas
29
,
083301
(
2022
).
22.
I. E.
Ochs
and
N. J.
Fisch
, “
Momentum conservation in current drive and alpha-channeling-mediated rotation drive
,”
Phys. Plasmas
29
,
062106
(
2022
).
23.
R.
Perillo
,
J. A.
Boedo
,
C. J.
Lasnier
,
I.
Bykov
,
C.
Marini
, and
J. G.
Watkins
, “
Quantifying heat and particle flux to primary and secondary divertors for various types of edge-localized-modes
,”
Phys. Plasmas
29
,
052506
(
2022
).
24.
J. D.
Sadler
,
C. A.
Walsh
,
Y.
Zhou
, and
H.
Li
, “
Role of self-generated magnetic fields in the inertial fusion ignition threshold
,”
Phys. Plasmas
29
,
072701
(
2022
).
25.
C.
Shi
,
M.
Velli
,
S. D.
Bale
,
V.
Réville
,
M.
Maksimović
, and
J.-B.
Dakeyo
, “
Acceleration of polytropic solar wind: Parker Solar Probe observation and one-dimensional model
,”
Phys. Plasmas
29
,
122901
(
2022
).
26.
J. E.
Shrock
,
B.
Miao
,
L.
Feder
, and
H. M.
Milchberg
, “
Meter-scale plasma waveguides for multi-GeV laser wakefield acceleration
,”
Phys. Plasmas
29
,
073101
(
2022
).
27.
X.
Wang
,
A.
Harrison
,
Y.
Chang
, and
J.
Liu
, “
Pinching arc plasmas by high-frequency alternating longitudinal magnetic field
,”
Phys. Plasmas
29
,
073506
(
2022
).
28.
D. A.
Yager-Elorriaga
,
F. W.
Doss
,
G. A.
Shipley
,
P. F.
Knapp
,
D. E.
Ruiz
,
A. J.
Porwitzky
,
J. R.
Fein
,
E. C.
Merritt
,
M. R.
Martin
,
C. E.
Myers
,
C. A.
Jennings
,
I. C.
Smith
,
D. J.
Marshall
,
C. R.
Aragon
,
L.
Shulenburger
,
T. R.
Mattsson
, and
D. B.
Sinars
, “
Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform
,”
Phys. Plasmas
29
,
052114
(
2022
).
29.
M.-G.
Yoo
,
W. X.
Wang
,
E.
Startsev
,
C. H.
Ma
,
S.
Ethier
,
J.
Chen
, and
X. Z.
Tang
, “
The 3D magnetic topology and plasma dynamics in open stochastic magnetic field lines
,”
Phys. Plasmas
29
,
072502
(
2022
).