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ABSTRACT

We consider the neutrality in the framework of the average-atom model. It is shown that it is difficult to ensure the local neutrality inside the
Wigner–Seitz sphere and the global neutrality inside all space. If we keep the neutrality of the Wigner–Seitz sphere, there is a small excess or
deficit of charge in all space. Numerical examples are given for aluminum, iron, molybdenum, and gold for various compressions as a func-
tion of temperature. The small excess or deficit of charge in all space is noticeable in the warm dense matter regime. At high temperature, the
neutrality inside the Wigner–Seitz sphere and in all space is restored.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0202120

I. INTRODUCTION

The microscopic description of hot dense plasmas is a compli-
cated topic. A powerful and widespread tool to do this is the average-
atom model. The first version was the semi-classical Thomas–Fermi
model.1 The quantum average-atom model2–7 is a generalization of the
Thomas–Fermi model. A self-consistent version is the one that
employs the density functional theory (DFT) in local density approxi-
mation (LDA) at finite temperature. It converges quite easily and pro-
vides equation of state as well as transport coefficients in a large part of
the density–temperature domain for a given element.

The key point of the average-atom model is the neutrality of the
Wigner–Seitz sphere using a chemical potential. One usually does not
bother to check the neutrality in all space, that is to say, globally. Only
a local neutrality condition is ensured. The reason is that the global
neutrality condition is difficult to check numerically. In this work, we
consider the local and global neutralities in the quantum average-atom
model. It is shown that it is difficult to satisfy both of them, and only
the local neutrality condition based on the neutrality of the Wigner–
Seitz sphere is ensured. This leads us with a non-neutrality in the
whole space. It is difficult to see the consequences of this fact from a
practical point of view. In most quantum average-atommodels consid-
ered, only the Wigner–Seitz sphere is of practical interest and the
global neutrality is simply not considered. We show that we can take
into account local and global neutralities using a proper calculation of
the phase shifts in the quantum average-atom interaction potential
V(r). A numerical tool is provided to obtain smooth phase shifts as a
function of wavenumber for a given orbital number to calculate the
continuum displaced charge �Zd due to the potential V(r). We are,

thus, able to calculate the excess charge that breaks the global neutral-
ity condition once the local neutrality condition is satisfied. This excess
charge is usually small compared to the nuclear charge in most ther-
modynamic conditions of practical interest.

This paper is organized as follows. In Sec. II, we present the theo-
retical formalism that is used to study the neutrality in the average-
atom model. Section III is devoted to numerical applications. Section
IV is the conclusion.

II. THEORY

We perform calculations in the non-relativistic approximation
using an average-atom model in a muffin-tin approximation1–7 for a
given element at constant mass density q and electron temperature T.
We assume that the ion and electron temperatures are equal and that
the system is in local thermodynamic equilibrium. Using DFT in LDA
at a finite temperature, the Schr€odinger equation for the average atom
reads

� �h2

2me
r2 þ VðrÞ

" #
waðrÞ ¼ eawaðrÞ; (1)

where �h is the reduced Planck constant, e is the elementary charge,
and me is the electron mass. ea is the one-electron energy. a ¼ ðn; ‘Þ
for bound states and a ¼ ðe; ‘Þ for continuum states. In this case, the
one-electron energy is simply e. We use the sign of the one-electron
energy to define a bound state or a free state. The one-electron
potential
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VðrÞ ¼ �Ze2

r
þ e2

ð
dr0

nðr0Þ
jr� r0j þ Vxc nðrÞ½ � � Vxc nðRWSÞ½ � (2)

is equal to zero beyond the Wigner–Seitz radius RWS. 4pR3
WSNi=3 ¼ 1,

where Ni is the ion density, Vat ¼ 4pR3
WS=3 is the Wigner–Seitz vol-

ume, Z is the nuclear charge, n(r) is the total electron density of the
average-atom, and Vxc is the finite-temperature exchange-correlation
potential.8 The wavefunction waðrÞ is decomposed in a spherical basis

waðrÞ ¼
1
r
PaðrÞYma

‘a
ðh;/Þvra ; (3)

where Ym
‘ ðh;/Þ is a spherical harmonic and vr is a two-component

electron spinor. The bound and free radial wavefunctions are normal-
ized as ðþ1

0
drPn‘ðrÞPn0‘ðrÞ ¼ dnn0 (4)

and ðþ1

0
drPe‘ðrÞPe0‘ðrÞ ¼ dðe� e0Þ: (5)

The total electron density of the average-atom n(r) is equal to nbðrÞ
þnf ðrÞ, where

4pr2nbðrÞ ¼
X
n‘

2ð2‘þ 1Þ
1þ eðen‘�lÞ=kBT Pn‘ðrÞ

2 (6)

and

4pr2nf ðrÞ ¼
X
‘

ðþ1

0
de

2ð2‘þ 1Þ
1þ eðe�lÞ=kBT Pe‘ðrÞ

2: (7)

kB is the Boltzmann constant. The chemical potential l is determined
such that the system is neutral inside the Wigner–Seitz sphere, i.e.,ðRWS

0
4pr2 nbðrÞ þ nf ðrÞ

� �
dr ¼ Z: (8)

We consider various average ionizations. We can define �ZWS;1

from the free electron density inside the Wigner–Seitz sphere, i.e.,

�ZWS;1 ¼
ðRWS

0
4pr2nf ðrÞdr; (9)

and �ZWS;2 from the electron density at RWS, i.e.,

�ZWS;2 ¼ nðRWSÞ=Ni ¼ 4
3
pR3

WSnðRWSÞ: (10)

Let us introduce �Z0 deduced from the background electron
density

n0 ¼
ffiffiffi
2

p ðmekBTÞ3=2
�h3p2

I1=2ðgÞ; (11)

where g ¼ bl is the reduced chemical potential and b ¼ 1=kBT .
Moreover, I1=2ðgÞ is the Fermi–Dirac integral of order 1/2, i.e.,

I1=2ðgÞ ¼
ðþ1

0

x1=2

1þ ex�g
dx: (12)

In clear,

�Z0 ¼ n0=Ni ¼ 4
3
pR3

WSn0: (13)

Let us now wonder about the neutrality in the average-atom
model in all space. We have three terms. The first one is �Z0 defined by
Eqs. (11) and (13). The second one is the continuum displaced charge
�Zd due to the potential V(r), i.e.,

�Zd ¼
ðþ1

0
4pr2 nf ðrÞ � n0

� �
dr: (14)

We can use7 the Friedel formula to calculate �Zd introduced in Eq.
(14), i.e.,

�Zd ¼ b
ðþ1

0

�h2kdk
me

f ðeÞ 1� f ðeÞ½ � 2
p

X‘>
‘¼0

ð2‘þ 1Þd‘ðkÞ; (15)

where e ¼ �h2k2
2me

. d‘ðkÞ is the phase shift. In Eq. (15), f ðeÞ is the Fermi–
Dirac statistic occupation number, i.e.,

f ðeÞ ¼ 1
1þ ebe�g

: (16)

The last term is the contribution of the bound electrons, i.e.,

Zb ¼
ðþ1

0
4pr2nbðrÞdr: (17)

Consequently, the total number of electrons per ion is equal to

Ztot ¼ �Z0 þ �Zd þ Zb; (18)

i.e.,

Ztot ¼ 4
3
pR3

WSn0 þ
ðþ1

0
4pr2 nf ðrÞ � n0

� �
dr þ

ðþ1

0
4pr2nbðrÞdr:

(19)

We can simplify this expression as follows. We find that

Ztot ¼ 4
3
pR3

WSn0

þ
ðRWS

0
4pr2 nf ðrÞ � n0

� �
dr þ

ðþ1

RWS

4pr2 nf ðrÞ � n0
� �

dr

þ
ðRWS

0
4pr2nbðrÞdr þ

ðþ1

RWS

4pr2nbðrÞdr: (20)

Using the neutrality relation inside the Wigner–Seitz sphere (8), we
find that

Ztot ¼ Z þ
ðþ1

RWS

4pr2 nf ðrÞ � n0
� �

dr þ
ðþ1

RWS

4pr2nbðrÞdr: (21)

This is the main result of this work. In the Thomas–Fermi approxima-
tion,1 we have

nbðrÞ þ nf ðrÞ ¼
ffiffiffi
2

p ðmekBTÞ3=2
�h3p2

I1=2 g� bVeðrÞ½ �; (22)

where
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VeðrÞ ¼ �Ze2

r
þ e2

ð
dr0

nðr0Þ
jr� r0j : (23)

Since VeðrÞ ¼ 0 when r � RWS; nbðrÞ þ nf ðrÞ ¼ n0 and Ztot ¼ Z. In
the Thomas–Fermi approximation, we are neutral locally inside the
Wigner–Seitz sphere and globally in the whole space. This is not the case
in the quantum average-atom model. We are neutral locally inside the
Wigner–Seitz sphere but not necessarily globally in the whole space. In

Eq. (21), the two terms
Ðþ1
RWS

4pr2½nf ðrÞ � n0�dr and
Ðþ1
RWS

4pr2nbðrÞdr
are usually different from zero. The first one has no definite sign. It can be
greater or smaller than zero depending on the potential V(r). The second
one is always positive. In general, these two terms are small compared to

the nuclear charge Z. The term
Ðþ1
RWS

4pr2nbðrÞdr has a noticeable value
when one bound orbital begins to delocalize, i.e., the bound electrons of
this orbital go into the continuum by a dense plasma effect. In the follow-
ing, we will give examples of the values of Ztot � Z in various thermody-
namic conditions for various elements. The generalization to the
relativistic domain is straightforward.7,9

III. NUMERICAL APPLICATIONS

To calculate Ztot, we need to know �Zd and so the values of the phase
shifts d‘ðkÞ (15). Numerically, the phase shift d‘ðkÞ is known within Np,

where N is an integer. In practice, the function k ! d‘ðkÞ at given ‘
presents discontinuities at given k values and the discontinuities are equal to
Np, where N varies with k. This means that we cannot calculate �Zd given
by Eq. (15) if we keep the discontinuities. The computer program used in
this work is written in Fortran 90. To regularize the function k ! d‘ðkÞ at
given ‘, we have written as small subroutine that works as follows. Let us fix
‘ and write the values of the function k ! d‘ðkÞ as f(i), where the index i
goes from 1 to N>. We start with i¼ 1 and consider f ðiþ 1Þ � f ðiÞ.
There may be a discontinuity at this point given by a multiple of p. So we

use the Fortran function NINT and calculate npi ¼ NINT½f ðiþ1Þ�f ðiÞ
p �.

Once npi is obtained, we subtract npip from f(j) where j goes from iþ 1 to
N>. When i ¼ N>, we have finished to regularize the curve k ! d‘ðkÞ at
given ‘. We now regularize the continuous curve k ! d‘ðkÞ at given ‘ by
assuming that d‘ð0Þ ¼ 0. This is sufficient to calculate properly �Zd in Eq.
(15). We, thus, calculate np1 ¼ NINT½f ð1Þ=p� and subtract np1p for the
all values of f(i) where i¼ 1 toN>. We have, thus, obtained a smooth func-
tion k ! d‘ðkÞ at given ‘ with the convention d‘ð0Þ ¼ 0, and we can
safely calculate �Zd from Eq. (15). We have used a portion of the Levinson
theorem.10 The exceptional case, where d‘ð0Þ ¼ p n0 þ 1

2

� �
for ‘ ¼ 0, has

never been encountered in practice. If it happens, one should replace d0ðkÞ
in Eq. (15) by d0ðkÞ � p

2 or simply use the expression of �Zd involving
dd‘ðkÞ
dk

given in Ref. 7.

FIG. 1. Ztot � Z as a function of tempera-
ture for various compressions with respect
to the mass density at cold solid density in
aluminum, iron, molybdenum, and gold.
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We plot in Fig. 1 Ztot � Z as a function of temperature for various
compressions for aluminum, iron, molybdenum, and gold, respec-
tively. By compression, we mean q=q0, where q0 is the mass density at
cold solid density. We can see that the curves are smooth as a function
of temperature and compression. For aluminum, Ztot � Z is positive
except at compression one and beyond 1000 eV where it becomes
slightly negative. For the other elements, at compression one, Ztot � Z
is positive then it decreases and progressively changes sign when we
increase the compression at low temperature. Ztot � Z is noticeable
below 1000 eV. We can say that the neutrality in all space is broken in
the warm dense matter regime. The behavior as a function of compres-
sion depends on the element. ðZtot � ZÞ=Z decreases with increasing
nuclear charge.

It is difficult to provide an example of a physical consequence of
the present results in an actual system due to a charge mismatch
(excess or deficit). It is clear, however, that discontinuities using as ion-
ization �Z0 þ �Zd may be found due to the localization or delocalization
of bound orbitals because of pressure ionization. We can encounter
this effect in the particular case of an s orbital for whichÐþ1
RWS

4pr2nbðrÞdr can be significant as said above.

IV. CONCLUSION

We have studied the neutrality within the framework of the quan-
tum average-atom model. We have shown that it is difficult to ensure
a local neutrality, i.e., the neutrality within the Wigner–Seitz sphere,
and a global neutrality, i.e., the neutrality in all space. This is a funda-
mental shortcoming of the quantum average-atom model. The semi-
classical Thomas–Fermi model is neutral both locally and globally. We
have given a formula to characterize the neutrality in all space using
the neutrality in the Wigner–Seitz sphere. To use this formula in prac-
tical calculations, we need to know the phase shifts. A method has
been given to provide smooth phase shifts that cancel in zero. They
are, thus, appropriate to use the formula that characterize the neutral-
ity in all space. Numerical examples have been given for light to heavy
elements in which the neutrality in all space is broken in the warm

dense matter regime. At high temperature, we have obtained local and
global neutrality. We can obtain an excess of charge or a deficit of
charge depending on the element and the thermodynamic conditions.
The excess of charge or the deficit of charge is usually small and
becomes smaller compared to the nuclear charge when we consider
higher and higher nuclear charges.
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