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ABSTRACT

Detailed deterministic derivation of kinetic equations for relativistic plasmas is given. Focus is made on the dynamic of one-coordinate distri-
bution functions of various tensor dimensions, but the closed set of kinetic equations is constructed of three functions: the scalar distribution
function, the vector distribution function of dipole moment, and the vector distribution function of velocity (or the dipole moment in the
momentum space). All two-coordinate distribution functions are discussed as well. They are presented together with their limits existing in
the self-consistent field approximation. The dynamics of the small amplitude spin-electron-acoustic waves in the dense degenerate plasmas is
studied within the kinetic model. This work presents the deterministic approach to the derivation and interpretation of the kinetic equations.
So, no probability is introduced during the transition from the level of individual particles to the collective functions. The problem of ther-
malization is not considered, but we can see that the structure of kinetic equations is kept for the system before and after thermalization.
Hence, the kinetic equations can be used to approach this item.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0186195

I. INTRODUCTION

Kinetic theory is one of the fundamental theories of the macro-
scopic phenomena in various physical systems.1–8 Particularly, it plays
an essential role in the plasma physics.9 Kinetic theory requires proper
microscopic derivation, where the evolution of the distribution
function is traced from the evolution of individual particles. The distri-
bution function shows the relative positions of all particles in the six-
dimensional phase space and it can be consistently defined in the
deterministic way. So, no probability theory is applied for the deriva-
tion or interpretation of kinetic equations or the distribution function.
Such a view on the kinetic theory is the extension of the classical
hydrodynamics based on the tracing of the microscopic dynamics of
individual particles.10,11

Classical mechanics gives us dynamics of particles in the 3N-
dimensional configurational space. The model of motion of particles is
composed of the individual trajectories. Each of them, formally, takes
place in its own three-dimensional space. This picture of motion is not
obvious if we consider the Newtonian form of mechanics, where we
can use our own imagination to place all particles in the single three-
dimensional space. However, the Lagrangian and Hamiltonian forms

of mechanics show the multidimensional structure of the theory more
clearly. Moreover, the construction of the mathematical model out of
trajectories (which are one-dimensional mathematical objects) distin-
guishes the classical mechanics from the hydrodynamics or the electro-
dynamics, which are the field theories.

The derivation of the hydrodynamics from the mechanics requires
the representation of the mechanics in the form of the field theory. So,
the mechanics would have the same mathematical structure as the elec-
trodynamics, which is essentially important for the dynamics of charged
particles. References 10 and 11 basically present the field form of classi-
cal mechanics, where the dynamics of particles takes the form of the
dynamics of material fields. Inevitably, the field form of classical
mechanics appears in the form of hydrodynamic equations. These are
equations of nonequilibrium hydrodynamics that require further reduc-
tion for the particular forms of the collective motion. Particularly, it
leads to some generalized form of nonequilibrium thermodynamics.
Choosing a regime of thermal equilibrium allows us to get the first law
of thermodynamics from the energy evolution equation. The possibility
to consider different regimes, like regimes close to the thermal equilib-
rium and regimes out of equilibrium, shows that this approach can be
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used for the study of the thermalization process in the physical systems
considering the dynamics of the systems in terms of the collective varia-
bles (material fields). It would require proper truncation of the hydrody-
namics out equilibrium considering higher rank material fields to
include the mechanism of relaxation in the model. However, it is an
open problem that can be addressed within this formulation.

The formulation of the mechanics in terms of three-dimensional
material fields leads to the hydrodynamics form of equations. While
we consider the relative positions and relative momentums of all par-
ticles, we go to the distribution of particles in the six-dimensional space
(the phase space of coordinate and momentum). This form of classical
mechanics is considered in this paper. If we consider the microscopic
evolution of point-like particles, we get the following distribution of
the particle number in the coordinate space:12

nmðr; tÞ ¼
XN
i¼1

dðr� riðtÞÞ; (1)

where riðtÞ is the coordinate of the ith particle. This approach is sug-
gested by Klimontovich.1,12 While we use notation nmðr; tÞ on the left-
hand side of Eq. (1), we should write nmðr; r1ðtÞ;…; rNðtÞÞ. So, the
time dependence of function nm is directly constructed out of the time
evolution of coordinates of particles. The parameterization of the phys-
ical space is introduced here r. So, this form gives us an intermediate
step from the mechanics of trajectories to the field form of classical
mechanics.

Considering the microscopic distribution (1) different authors
applied some form of averaging (see, for instance, Refs. 1 and 13).
Sometimes, the authors use some unspecified distributions hnmi (see,
for instance, Ref. 1). Otherwise, the authors use a specific form of aver-
aging via some distribution function (see, for instance, Refs. 13 and
14). Anyways, the authors try to impose a probabilistic interpretation
of the procedure of averaging. Let us mention that the aim of averaging
is to make the transition to the macroscopic scale by averaging on the
physically infinitesimal volume, but usually it is being replaced by the
averaging on some distribution function.

Systematic, nonstatistical, definition of the averaging on the phys-
ically infinitesimal volume is suggested by Drofa and Kuz’menkov10

(see also Refs. 15 and 16)

neðr; tÞ ¼ 1
D

ð
D
dn
XN=2

i¼1

dðrþ n� riðtÞÞ: (2)

Equation (2) contains vector n that scans the physically infinitesimal
volume (it is illustrated in Fig. 1). However, the physically infinitesimal
volume appears as the D-vicinity of each point of space. It is assumed
that N is the full number of particles in the system. It is composed of
two species: electrons with numbers i 2 ½1;N=2� and protons
i 2 ½N=2þ 1;N�. We need to trace the evolution of each species in the
system.With no restrictions, we illustrate our derivation on the subsys-
tem of electrons, so subindex e is dropped for all functions describing
electrons in equations below ne � n.

A similar background is suggested for the kinetic theory. So, the
microscopic distribution function is composed of delta functions in
the physical coordinate space and the momentum space

fmðr; p; tÞ ¼
XN
i¼1

dðr� riðtÞÞdðp� piðtÞÞ: (3)

Transition to the macroscopic level is made similar to Eq. (2). We
introduce the physically infinitesimal volume in a six-dimensional
phase space

f ðr; p; tÞ ¼ 1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

dðrþ n� riðtÞÞdðpþ g� piðtÞÞ;

(4)

where dg is the element of volume in the momentum space, withÐ
Dp
dg integral over Dp-vicinity in the momentum space, and D � Dr

is the delta vicinity in the coordinate space. Recent development of this
approach can be found in Refs. 17–20.

This discussion is about the field form of classical mechanics.
However, similar insight is imposed on quantum mechanics. So, the
formulation of the many-particle quantum mechanics in the form of
evolution of the material fields is developed.21–28

The discussion presented above is focused on the fundamental
background of hydrodynamics and kinetics, since the theoretical part
of this paper is based on the development of the kinetic theory.
However, the application of the kinetic theory to the high-density mag-
netized spin polarized degenerate electron gas is also considered.
Particularly, we focus on the spin-electron-acoustic waves (SEAWs).
Existence of the SEAWs in the partially spin-polarized degenerate plas-
mas was theoretically suggested in 2015.29 They appear as the longitu-
dinal waves of density and electric field, which propagate parallel to
the anisotropy direction in the magnetized electron gas.29,30

If we have no spin polarization, we find a single longitudinal wave
in the electron gas under assumption of the motionless ions. It is the
Langmuir wave, which corresponds to the collective oscillations of elec-
trons relative to the motionless ions. If we include the spin-polarization,
we also find the SEAWs. Let us describe the physical picture. It corre-
sponds to the relative motion of electrons with different spin projec-
tions. The spin polarization manifests itself in different partial number
densities of electrons with the particular spin polarization. Hence, the
relative oscillations of electrons with different amplitudes of the number
density give the oscillation of a small proportion of electrons relative to
motionless ions as well.29,30 The SEAWs show similarity to the spin-
plasmons considered in the two-dimensional structures.31–40 Recently,
the SEAWs have been considered in the degenerate electron gas,41 while
the background of the applied model is given in Refs. 16, 42 and 43.

The number density increase in electrons n0e up to values, where
the Fermi energy is proportional to the rest energy of electron
eFe ¼ ð3p2n0eÞ2=3�h2=2me � mec2, gives a noticeable change in the

FIG. 1. The illustration of the D-vicinity in the coordinate space is given.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 042106 (2024); doi: 10.1063/5.0186195 31, 042106-2

VC Author(s) 2024

 24 April 2024 19:04:53

pubs.aip.org/aip/php


dispersion dependence of the SEAWs. It also corresponds to the
change of the dispersion dependence of the Langmuir waves. It shows
the decrease in the relative frequency of the Langmuir wave and
SEAW. Moreover, the relativistic regime shows the growth of the
amplitude of the number density of the SEAWs relative to the ampli-
tude of the Langmuir waves for the chosen value of the electric field in
these waves.

This paper is organized as follows. In Sec. II, the derivation
method of the kinetic equation from the microscopic motion is dem-
onstrated and the general structure of the kinetic equation is derived.
In Sec. III, we present an approximate kinetic model, where the contri-
bution of physically infinitesimal volume is considered in a minimal
regime called the monopole regime. In Sec. IV, the self-consistent field
approximation of monopole regime is considered. In Sec. V, the multi-
pole approximation in the relativistic kinetic equation is presented as
the generalization of the monopole regime considered in Sec. III. In
Sec. VI, the self-consistent field approximation of the multipole
approximation is presented. In Sec. VII, the kinetic equation for the
evolution of the dipole moment vector distribution function is
obtained. In Sec. VIII, the kinetic equation for the distribution function
of velocity is derived. In Sec. IX, a closed set of three kinetic equations
is discussed. In Sec. X, the spin-electron-acoustic waves in the spin
polarized electron gas of high density are considered. In Sec. XI, a brief
summary of the obtained results is presented.

II. DERIVATION OF THE VLASOV EQUATION TRACING
THE MICROSCOPIC MOTION OF PARTICLES

Analysis of many-particle systems is the analysis of motion of the
large number of particles of order of 1023. For the classical systems, it
leads to 1023 second order connected differential equations. Nowadays,
it is still impossible to use some computing powers to solve such prob-
lems. Moreover, it would be unimaginable to understand the obtained
solution if we find one. We can expect that the majority of the physi-
cally relevant situations lead to some hierarchy of time, space, energy,
and entropy scales. It means that the straightforward solution of the
large number differential equations is meaningless. Kinetic theory is an
example of the theoretical tools, where we can distinguish this hierar-
chy. The formation of different scales during the evolution of physical
systems comes from the interaction between particles leading to the
cause–effect sequences. In the kinetic theory, these sequences are hid-
den in the relation between different one-coordinate distribution func-
tions, between one-coordinate and two-coordinate distribution
functions, etc. On the other hand, we have the probabilistic approach
to the many-particle systems. Let us speak on the classical systems
since the quantum systems have two levels of description. It means
that the wave function has the probabilistic interpretation, but the evo-
lution of the wave function itself is determined by the nonstationary
Schr€odinger/Pauli equation. The probabilistic approach leads to “pre-
diction” of the result of the many-particle evolution. Existing statistical
theory does not provide blind prediction. It uses some information on
the microscopic motion of individual particles and information on the
form of their interaction. For instance, if we have a look at the deriva-
tion of the Vlasov equation in terms of BBGKY hierarchy, it starts
with the Liouville equation obtained from the classical mechanics. It
includes the interparticle interaction as a source of correlations.
However, further integration on the ensemble of the similar physical
systems with close (but different) initial conditions can disturb some
physical correlations. It can also lead to the complexification of

methods of analysis of the correlation function and following trunca-
tion technique. It can also lead to “cloudiness” in interpretation of hier-
archy of time, space, energy, and other physical scales.

We need to consider the evolution of the distribution function. It
requires the present equation of motion of each particle in full detail

_p iðtÞ ¼ FðriðtÞ; tÞ; (5)

where piðtÞ ¼ miviðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2i ðtÞ=c2

p
is the relativistic momentum

of the ith particle, and FðriðtÞ; tÞ is the force acting on the ith particle
from the electromagnetic field created by other particles in the system.
The equation of motion for each particle appears as the evolution of
the momentum under the Lorentz force action

FðriðtÞ; tÞ ¼ qiEðriðtÞ; tÞ þ 1
c
qi viðtÞ;BðriðtÞ; tÞ½ �

� �
; (6)

where Ei ¼ Ei;ext þ Ei;int , Bi ¼ Bi;ext þ Bi;int , Ei ¼ EðriðtÞ; tÞ, and
Bi ¼ BðriðtÞ; tÞ, while the external fields are included along with the
field of interaction of particles. The electric Ei;int and magnetic Bi;int

fields caused by particles surrounding the ith particle are Ei;int

¼ �riuðriðtÞ; tÞ � 1
c @tAðriðtÞ; tÞ and Bi;int ¼ ri � AðriðtÞ; tÞ with44

uðriðtÞ; tÞ ¼
X
j 6¼i

qj

ð d t � t0 � 1
c
jri tð Þ � rj t

0ð Þj
� �

jriðtÞ � rjðt0Þj dt0; (7)

and

AðriðtÞ; tÞ ¼
X
j 6¼i

qj

ð d t � t0 � 1
c
jri tð Þ � rj t

0ð Þj
� �

jriðtÞ � rjðt0Þj
vjðt0Þ
c

dt0: (8)

Equations (7) and (8) allow to introduce the Green function of the
retarding electromagnetic interaction44

eGij ¼
d t � t0 � 1

c
jri tð Þ � rj t

0ð Þj
� �

jriðtÞ � rjðt0Þj : (9)

We consider the high-temperature plasmas, where the electrons
(and maybe other species) have the relativistic temperatures comparable
with the rest energy of the electron mec2 (of the particle of correspond-
ing species). Obtaining such huge temperatures of the species would
lead to a high degree of ionization of the atomic objects. Moreover, the
two-particle interactions (collision-like processes) of the high-energy
electrons with the ions would change the electron configurations of ions
or provide additional ionization. These dynamical processes should
contribute to the model. To avoid these complexifications, we consider
the hydrogen plasmas, where we have electrons and protons only.

To find the evolution equation for the distribution function (4),
we consider the time derivative of this function to obtain the following
equation:

@t f ðr; p; tÞ þ r � 1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

_r iðtÞdðrþ n� riðtÞÞ

� dðpþ g� piðtÞÞ þ rp � 1D
1
Dp

ð
D;Dp

dndg
XN=2

i¼1

_p iðtÞ

� dðrþ n� riðtÞÞdðpþ g� piðtÞÞ ¼ 0: (10)
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The second (third) term in this equation appears as the result of action
of the time derivative on the delta-function containing the coordinate
(the momentum).

The second term in Eq. (10) contains the following function:

hviðtÞi � 1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

viðtÞdridpi; (11)

where viðtÞ ¼ driðtÞ=dt, dri � dðrþ n� riðtÞÞ, and dpi � dðp
þg� piðtÞÞ. For the further representation of this function, we apply
the relativistic expression for the velocity of a particle via its momen-
tum viðtÞ ¼ piðtÞc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i ðtÞ þm2

i c2
p

, where the additional replacement
of the momentum piðtÞ on pþ g can be applied. It gives the represen-
tation of function hviðtÞi:

hviðtÞi ¼ 1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

ðpþ gÞcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ gÞ2 þm2

i c2
q dridpi: (12)

We need to extract term v � f , which is traditional for the physical
kinetics. Hence, expression (12) is represented in required form as

hviðtÞi ¼ v � f ðr; p; tÞ þ eFðr; p; tÞ; (13)

where

eFðr; p; tÞ � hDviðtÞi (14)

with

hDvii� 1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

gcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i c2
p � pðp �gÞcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þm2
i c2

p� �30@ 1Adridpi;

(15)

with p ¼ msv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
and v ¼ pc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

s c
2

p
. In addition to

the arguments of the vector distribution function eFðr; p; tÞ, we use
symbol “tilde” to distinguish it from the force acting on the individual
particles (5).

We include the representation (13) in Eq. (10). We also include
equations of motion of the individual particles (5)–(8) in the last term
in Eq. (10):

@t f ðr; p; tÞ þ ðv � rÞf ðr; p; tÞ þ r � eFðr; p; tÞ
þ qs
ms

1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

"
Eextðrþ n; tÞ þ 1

c

"
ðv þ DviÞ

� Bextðrþ n; tÞ
#
þ qs0

XN
j¼1;j 6¼i

ð
dt0
�
�rr � 1

c

vjðt0Þ
c

@t

þ 1
c2

viðtÞ � rr � vjðt0Þ
� �� ��

Gðrþ n� rjðtÞÞ
#
dri � rpdpi ¼ 0;

(16)

where we use symbol @̂t instead of the time derivative due to the change
of the structure of argument of the Green function G. We replaced riðtÞ
by rþ n in the arguments of the external electric field, the external
magnetic field, and the Green function using the delta-function dri.
Initially the action of the time derivative has the following form:

@tGðt; t0; riðtÞ; rjðt0ÞÞ ¼ d0

jriðtÞ � rjðt0Þj ; (17)

where d0 is the derivative of the delta function on its argument. It is
also can be rewritten in the following form:

@tGðt; t0; r; r0Þ ¼ d0

jrþ n� r0 � n0j : (18)

For the introduction of n0, see the following equations.
Next, we use representation (13) in terms, which describes the

interaction

@t f þ v �rf þr� eFþ qs
ms

1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

�
Eðrþ n; tÞ

þ 1
c
ðvþDviÞ�Bðrþ n; tÞ½ �

�
dri �rpdpi

þ qs
ms

qs0
ð
dr0dp0

ð
D;Dp

dndgdn0dg0

D2D2
p

XN=2

i¼1

XN
j¼1;j 6¼i

ð
dt0

� �rr� 1
c

ðv0 þDv0jÞ
c

@t � 1
c2

ðvþDviÞ� ðv0 þDv0jÞ�rr

h ih i� �
�Gðrþ n� r0 � n0Þdri �rpdpidr0 jdp0 j ¼ 0; (19)

where dr0 j � dðr0 þ n0 � rjðtÞÞ and dp0 j � dðp0 þ g0 � pjðtÞÞ.
The presented kinetic equation (19) contains the deviation of

coordinates n from the center of the D-vicinity r. It also contains the
deviation of the velocity Dvi from the value corresponding to the cen-
ter of the Dp-vicinity in the momentum space v ¼ pc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

s c
2

p
.

This is the intermediate general representation of the kinetic equation,
which is considered below under some additional assumptions.

III. MONOPOLE APPROXIMATION OF THE KINETIC
EQUATION FOR THE SCALAR DISTRIBUTION
FUNCTION

To consider the monopole approximation of the kinetic equation,
we need to neglect the contribution of n; n0, g (including Dvi), and g0

(including Dv0j) in the dynamical functions. However, on this step, we
present the kinetic equation, where the monopole approximation is
considered for the space variables only. Hence, we neglect the contri-
bution of n, and n0, but we keep the contribution of g,

@t f þ v �rf þr� eFþ qs
ms

Eðr; tÞþ 1
c
v�Bðr; tÞ½ �

� �
�rpf

þ qs
msc

ðrp � eFðr;p; tÞ�Bðr; tÞ
� �

Þþ qs
ms

qs0
ð
dr0dp0

ð
D;Dp

dndgdn0dg0

D2D2
p

�
XN=2

i¼1

XN
j¼1;j 6¼i

ð
dt0 �rr� v0

c2
@t þ 1

c2
v� r� v0½ �½ �

� �
Gðr;r0Þdri

�rpdpidr0 jdp0 j ¼ 0: (20)

Transition from Eq. (19) to Eq. (20) includes the transformation like
Eðrþ n; tÞ � Eðr; tÞ and

1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

Eðr; tÞdri � rpdpi ¼ Eðr; tÞ � rpf ; (21)
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where the electric field Eðr; tÞ is placed outside of the integral, while
the rest is the derivative of the distribution function on the
momentum.

Equation (20) allows to introduce the two-particle (or in other
terms two-coordinate) distribution functions. To the best of my
knowledge, the majority of papers and books, including my own
works, use the notion “two-particle distribution functions.” It can be
confusing to some extent since the model describes the many-particle
systems. Hence, the distribution function and the two-particle distribu-
tion function actually describe the dynamics of whole the system.
Sometimes, the two-particle distribution functions are called two-
coordinate distribution functions. It looks more logical since it con-
tains two coordinates r and r0 (or more exactly two coordinates in the
phase space fr; pg and fr0; p0g).

Let us present the following kinetic equation in the monopole
approximation both on the coordinate and the momentum (we do it
due to the technical reasons, since we do not want to introduce several
two-coordinate distribution functions, but we show the complete pic-
ture below):

@t f þ v � rf þr � eF þ qs
ms

Eþ 1
c
v � B½ �

� �
� rpf

þ qs
msc

ðrp � eF � B½ �Þ þ qs
ms

qs0
ð
dr0dp0

ð
dt0

� �rr � v0

c2
@t þ 1

c2
v � r� v0½ �½ �

� �
Gðr; r0Þ � rpf2 ¼ 0; (22)

where qs0 f2 ¼ qef2;ee þ qi f2;ei and

f2;eeðr;r0;p;p0; t; t0Þ ¼
ð
D;Dp

dndgdn0dg0

D2D2
p

XN=2

i¼1

XN=2

j¼1;j 6¼i

dridpidr0 jdp0 j � hh1ii

(23)

is the two-coordinate distribution function. The compact notation is
also introduced for the two-coordinate distribution function con-
structed of double brackets hh1ii. We use this notation below for other
two-coordinate distribution functions.

Let us discuss the condition of neglecting n and n0 at the transi-
tion to Eqs. (20) and (21). In Eq. (19), we consider the electric field
Eðri; tÞ and other functions on the scale of the D-vicinity. The coordi-
nate of the ith particle is replaced with the combination rþ n, where r
is the center of the vicinity, while vector n scans the vicinity. Here, vec-
tor n has particular value ni for the ith particle (if it is inside the vicin-
ity). The possibility of the expansion on parameter n depends on the
change of the electric field on the scale of the vicinity. If we consider
the propagation of the high-frequency/short-wavelength radiation
through the plasmas, we have the fast nonmonotonic change of the
electric field over the vicinity at k < D1=3. Therefore, the expansion is
not allowed. In the opposite regime k > D1=3 (it would be even better
for k > 10D1=3), the change of the electric field can be considered as
relatively small. Below, it is discussed that D1=3 � rDe. Hence, the value
of D and the condition on the wavelength depend on the concentra-
tion. We cannot expand on n if the system is under action of the x-
rays, but we can expand on n if the system is under action of the radio
frequency radiation. If we consider the interparticle interaction, pre-
sented by terms containing the Green function G, we see two parame-
ters n and n0. Parameter n is included in the dependence of the

resulting electromagnetic field on the coordinate. So, it is equivalent to
the situation described above for the external field. Parameter n0 is sim-
ilar to n, but it is related to the particles creating field, while parameter
n is related to particles under the action of this field. We have less con-
trol of the inner field. However, the magnetic field depends on the
velocities of particles, so we can estimate it by the estimation of the
velocities of flows and the thermal velocities. The radiation of particles
depends on the acceleration of particles during interaction, but it can
be roughly estimated via the temperature using the Planck distribution.
The estimation of temperature of the system and velocity of flows gives
some information on the inner fields. It allows us to estimate the part
of the inner field, which can be modeled using the suggested approxi-
mation of expansion on n.

IV. THE SELF-CONSISTENT FIELD APPROXIMATION IN
CLASSIC MONOPOLE KINETICS FOR THE EQUATION
OF EVOLUTION OF SCALAR DISTRIBUTION FUNCTION

In order to consider the self-consistent field (the mean-field)
approximation, we need to split the two-coordinate distribution func-
tion f2;eeðr; r0; p; p0; t; t0Þ into the product of two one-coordinate distri-
bution functions f2;eeðr; r0; p; p0; t; t0Þ ¼ f ðr; p; tÞ � f ðr0; p0; t0Þ. Hence,
the term containing the interaction in Eq. (22) reappears in the follow-
ing form:

qs
ms

qs0rpf ðr; p; tÞ �
�
�rr

ð
dr0dp0

ð
dt0Gðr; r0Þf ðr0; p0; t0Þ

� 1
c2

ð
dr0dp0

ð
dt0v0@tGðr; r0Þf ðr0; p0; t0Þ

þ 1
c2

v � r�
ð
dr0dp0

ð
dt0v0

	 
	 
�
Gðr; r0Þf ðr0; p0; t0Þ ¼ 0: (24)

It allows us to introduce the scalar and vector potentials of the self-
consistent electromagnetic field

uintðr; tÞ ¼
ð
dr0dp0

ð
dt0Gðr; r0Þf ðr0; p0; t0Þ (25)

and

Aintðr; tÞ ¼ 1
c

ð
dr0dp0

ð
dt0v0Gðr; r0Þf ðr0; p0; t0Þ: (26)

Some discussion on the self-consistent field approximation for the
kinetics based on the deterministic microscopic motion of particles is
given in Ref. 45 for the nonrelativistic kinetics and hydrodynamics.

So, we find the well-known form of the Vlasov kinetic equation
for the systems of relativistic particles46

@t f þ v � rf þ qs Eþ 1
c
v � B

� �
� @f
@p

¼ 0; (27)

where E ¼ Eext þ Eint , B ¼ Bext þ Bint , the electric field is caused by
the distribution of charges in the coordinate space: Eint ¼ �ru
�@tAint=c, Bint ¼ r� Aint . Equation (27) appears to be coupled with
the electromagnetic field:r� Eint ¼ �@tBint=c,r � Bint ¼ 0,

r� Bint ¼ @tEint=cþ ð4p=cÞ
X
s

qs

ð
vfsðr; p; tÞdp; (28)

and
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r � Eint ¼ 4p
X
s

qs

ð
fsðr; p; tÞdp: (29)

The self-consistent/macroscopic/mean field is introduced in this
section. It corresponds to the possibility of the multiplication of the
two-coordinate distribution function on the product of two one-
coordinate distribution functions. However, this statement is rather
formal. Let us specify that it means in terms of presented method.
Noncorrelated part of the two-coordinate distribution function corre-
sponds to the distances between centers of two vicinities larger than
the diameter of the vicinity. In the opposite case, we have an overlap-
ping of the vicinities which is related to the interparticle interaction at
the small distances. This part of the interaction also includes that no
self-action of the particle exists. So, the condition i 6¼ j in the summa-
tion in the definition of the two-coordinate distribution function
explicitly works for the correlation. The uncorrelated/mean field part
corresponds to the interaction of two groups of particles, since these
two groups composed of different sets of particles.

Our goal is to derive the kinetic theory from the motion of indi-
vidual particles. It is a transition from a large number of discrete trajec-
tories to the evolution of the continuous distribution functions.
However, if one deals with the kinetic equations in order to model
physical processes, he needs to apply some numerical methods. The
particle-in-cell (PIC) method is one of highly important methods for
the numerical solving the Vlasov–Maxwell equations. Let us discuss a
canonical symplectic PIC method for solving the Vlasov–Maxwell
equations by discretizing its canonical Poisson bracket following
work.47 The distribution function f is discretized in the phase space
through the Klimontovich representation. It is made by the introduc-
tion of a finite number of the Lagrangian sampling points, which play
the role of the effective macroscopic particles. The electromagnetic
field is also discretized. Hence, the Hamiltonian functional is expressed
as a function of the sampling points and the discretized electromag-
netic field. It leads to a finite-dimensional Hamiltonian system with a
canonical symplectic structure. The total number of degrees of free-
dom for the constructed effective system is composed as D ¼ 3N
þ3M, where N denotes the total number of the Lagrangian sampling
points and M denotes the total number of discrete grid-points. This
method is particularly interesting for our research due to two items.
First, this method goes to the discretization of the kinetic formalism as
all numerical methods do. For us, it is interesting how this discretiza-
tion is made. This method makes a step back from the continuous dis-
tribution functions to a set of a finite number of the Lagrangian
sampling points considered as effective particles. Second, we can con-
sider it from the microscopic point of view, instead of a method of
solution of the macroscopic equations. This method constructs a sys-
tem of effective “quasiparticles” on the macroscopic scale. So, it intro-
duces an effective space averaging method in order to replace almost
infinite number of real particles to a finite number of the Lagrangian
sampling points. Moreover, the discretization of the electromagnetic
field includes a particular feature described in Ref. 47. The discretiza-
tion itself is given by Eq. (8) and below. The shift of particles from the
grid points is discussed in Ref. 48 before Eq. (14). It is mentioned in
Ref. 48 since it is necessary to get the potentials in the positions of par-
ticles, while almost all particles are shifted from grids. The method of
calculation of the off-grid values of potentials is presented in Ref. 48 by
the interpolation techniques. In our approach, we can find a similarity
to the introduction of the dipole-distribution functions.

V. MULTIPOLE APPROXIMATION IN THE RELATIVISTIC
KINETIC EQUATION FOR THE SCALAR DISTRIBUTION
FUNCTION (THE VLASOV EQUATION)
A. The interaction of particles with the external
electromagnetic field

The multipole expansion of the electric field Eextðrþ n; tÞ, the
magnetic field Bextðrþ n; tÞ, and the Green function Gðr� r0 þ n

�n0; t � t0Þ leads to the appearance of new distribution functions of
different tensor ranks. Let us introduce these functions before we find
their appearance from the expansion of Eq. (19) on n and n0 up to the
second order on these vectors.

First, we introduce the vector distribution function of the electric
dipole moment (divided by the charge qs) or the displacement of par-
ticles relative to the center of the D-vicinity,

daðr; p; tÞ ¼ hnai ¼
ð
D;Dp

dndg
DDp

XN
i¼1

nadridpi: (30)

We also include in our analysis the distribution function of the
electric quadrupole moment (divided by the charge qs)

Qabðr; p; tÞ ¼ hnanbi ¼
ð
D;Dp

dndg
DDp

XN
i¼1

nanbdridpi: (31)

The presented functions contain vector n scanning the D-vicinity.
Functions (30) and (31) appear as two examples of the infinite set of
the distribution functions containing different degrees of vector n (the
product of different numbers of projections to construct an element of
the tensor of corresponding rank).

As it is demonstrated by Eqs. (11)–(14), we can find the velocity
of the particle under the integral defining the distribution function.
We can also find the product of several projections of the velocity (of
the same particle, in order to get the one-coordinate distribution func-
tion) or the product of the projection of the velocity on the projections
of vector n.

One of such distribution functions appearing in our derivation is
the distribution function of flux of the electric dipole moment (divided
by the charge qs)

JabD ðr; p; tÞ ¼ hvai ðtÞnbi

¼ 1

D2

1

D2
p

ð
D;Dp

dndgdn0dg0
XN

i;j¼1;j6¼i

vai ðtÞnbdridpidr0 jdp0 j:

(32)

It is more useful to extract the velocity corresponding to the center of
Dp-vicinity in the momentum space, like we make it for hvai ðtÞi in Eqs.
(11)–(14). Therefore, function (32) leads to the following distribution
function:

jabD ðr; p; tÞ ¼ hDvai ðtÞnbi

¼ 1

D2

1

D2
p

ð
D;Dp

dndgdn0dg0
XN

i;j¼1;j 6¼i

ðDvai ðtÞÞnbdridpidr0 jdp0 j:

(33)

Let us introduce one more distribution function, which is the
third rank tensor. It is the distribution function of flux of the electric
quadrupole moment (divided by the charge qs)
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JabcQ ðr; p; tÞ ¼ hvai ðtÞnbnci

¼ 1

D2

1

D2
p

ð
D;Dp

dndgdn0dg0
XN

i;j¼1;j 6¼i

vai ðtÞnbncdridpidr0 jdp0 j:

(34)

For this distribution function, we can also introduce the reduced flux
of the electric quadrupole moment on the velocities in the local frame
Dvai ðtÞ: jabcQ ðr; p; tÞ ¼ hDvai ðtÞnbnci.

Functions (30)–(34) appear in the Vlasov-like kinetic equation
for the scalar distribution function. First, these functions appear at the
analysis of the action of the external electromagnetic field on the sys-
tem of charged particles. Here, we need to consider the fourth term in
Eq. (19). We apply the expansion of the external electromagnetic field
on the deviations of coordinate n from the center of the D-vicinity of
point r. This expansion requires the slow change of the fields E and B
over the diameter

ffiffiffiffi
D3

p
of the D-vicinity. Particularly, if we consider the

electromagnetic wave, we assume that the wavelength k is larger than
the diameter

ffiffiffiffi
D3

p
: k 	 ffiffiffiffi

D3
p

.
For instance, if we consider diameter

ffiffiffiffi
D3

p � 0:1 lm, we get an
estimation on the minimal value of the frequency of the electromag-
netic wave of order of xmax � 1016 s�1. So, we can consider electro-
magnetic waves with frequencies up to the frequencies of the visible
light, but the ultraviolet radiation is out of the range of applicability of
the model. If we deal with the dense medium, we can choose the delta-
vicinity of the smaller value. So, the range of the ultraviolet radiation
can be included in our analysis.

During the derivation of the kinetic equations, we consider the
expansion up to the second order on na: Eðrþ n; tÞ ¼ Eðr; tÞ
þna@

a
r Eðr; tÞþ ð1=2Þnanb@a

r @
b
r Eðr; tÞþ � � � and Bðrþ n; tÞ ¼ Bðr; tÞ

þna@
a
r Bðr; tÞþ ð1=2Þnanb@a

r @
b
r Bðr; tÞþ � � �. Hence, the fourth term

in Eq. (19) can be rewritten as

X0 ¼ qs
ms

hðEextðrþ n; tÞ þ 1
c
v � Bextðrþ n; tÞ½ �

þ 1
c
Dvi � Bextðrþ n; tÞ½ �Þrpi (35)

before the expansion. After the described expansion, we obtain

X0 ¼ qs
ms

�
Eextðr; tÞrpf ðr; p; tÞ þ ð@a

r EextÞrpd
aðr; p; tÞ

þ 1
2
ð@a

r @
b
r EextÞrpQ

abðr; p; tÞ þ 1
c
v � Bextðr; tÞ½ �rpf ðr; p; tÞ

þ 1
c
v � ð@a

r BextÞ
� �rpd

aðr; p; tÞ

þ 1
c

v � ð@a
r @

b
r BextÞ

h i
rpQ

abðr; p; tÞ

þ 1
c
eabc
h
Bb
extrc

pF
aðr; p; tÞ þ ð@d

r B
b
extÞrc

pj
adðr; p; tÞ

þ ð@d
r @

f
rB

b
extÞrc

pj
adf ðr; p; tÞ

i�
: (36)

To specify the novelty of our work, let us give the following illus-
tration. We consider the mean-field approximations meaning that we
neglect the short-range correlations associated with collisions. These
correlations are usually represented as the collisional integrals. We
show that the dynamics of plasmas in these approximations leads to

appearance of the vector and tensor distribution functions associated
with the nonsymmetric distributions of charged particles on the scale
of the physically infinitesimal volume. This microscopic dynamics
gives an effect on the macroscopic dynamics as well. As a qualitative
parallel, we can refer to the motion in a rapidly oscillating field, where
“smooth” motion of a particle is affected by dynamics on the small
time scale (see Ref. 49, Sec. 30). More direct comparison exists in the
standard electrodynamics, where we find the dipole moment, the
quadrupole moment, etc., if we consider the distribution of charges
and introduce characteristic of the whole system.

The appearance of the vector distribution functions is not neces-
sarily related to the microscopic dynamics. If we include the spin of
particles, it leads to the spin distribution function, which is a vector
function describing collective evolution of spins of particles (see Refs.
17, 30, and 50–52). However, the form and consequences of the spin
contribution is different. Moreover, these two approaches can be con-
sidered simultaneously.

B. The interparticle interaction

Let us introduce function X, which presents a term in the kinetic
equation describing the interparticle interaction [the last term in Eq.
(19)]. We split this term on three parts X ¼ X1 þ X2 þ X3, where are
X1 ¼ �ðqs=msÞhriui;int � rp;ii, X2 ¼ �ðqs=mscÞh@tAi;int � rp;ii, and
X3 ¼ ðqs=mscÞeabcecfghvbi ðtÞ@f

i A
g
i;int � rp;ii, and we use short notation

for the average on the physically infinitesimal volume, like

hriui;int � rp;ii ¼
ð
DrDp

dndg
DrDp

X
i

riui;intdri � rp;idpi: (37)

Here, functions ui;int and Ai;int are given by Eqs. (7) and (8).
Let us consider the multipole expansion for each of function Xj

(j¼ 1, 2, 3). We start this presentation with X1 which can be repre-
sented in the following form:

X1 ¼ �
ð

dr0dp0

ðDrDpÞ2
ð
dt0
ð
DrDp

dndg
ð
Dr0Dp0

dn0dg0

�
X
i;j;j 6¼i

qiqj
ms

rr Gðt; t0; rþ n; r0 þ n0Þ �
dri � rp;idpidr0 jdp0 j:

(38)

We make the expansion of the Green functions on n and n0. We
also expand the velocity of particle vbi on the deviation from the aver-
age velocity g. For the Green function Gðt; t0; rþ n; r0 þ n0Þ, we have
G¼G0þnbG1;bþð1=2ÞnbncG2;bc, where G0¼dðt� t0 � jr� r0j=cÞ=
jr�r0j, G1;b¼@b

rG0, and G2;bc¼@b
r @

c
rG0.

Function X1 can be represented in terms of two-coordinate dis-
tribution functions:

X1 ¼ � qsqs0

ms
rp

ð
dr0dp0

ð
dt0
	
ðrrG0Þf2;ss0 ðr; r0; p; p0; t; t0Þ

þ ðrrG
b
1Þ db2;ss0 ðr; r0; p; p0; t; t0Þ � db2;ss0 ðr0; r; p; p0; t; t0Þ
� �

þ 1
2
ðrrG

bc
2 Þ qbc2;ss0 ðr; r0; p; p0; t; t0Þ þ qbc2;ss0 ðr0; r; p; p0; t; t0Þ
�

�Dbc
2;ss0 ðr; r0; p; p0; t; t0Þ � Dbc

2;ss0 ðr0; r; p; p0; t; t0Þ
�


; (39)
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where we use the following notations for the two-coordinate distribu-
tion functions:

db2;ss0 ðr; r0; p; p0; t; t0Þ � hhnbii ! dbs ðr; p; tÞ � fs0 ðr0; p0; t0Þ; (40)

qbc2;ss0 ðr; r0; p; p0; t; t0Þ � hhnbncii ! qbcs ðr; p; tÞ � fs0 ðr0; p0; t0Þ; (41)

and

Dbc
2;ss0 ðr; r0; p; p0; t; t0Þ � hhnbn0cii ! dbs ðr; p; tÞ � dcs0 ðr0; p0; t0Þ: (42)

The potential part of the electric force qsE of the interparticle
interaction is presented in terms of the two-coordinate distribution
function. Next, we make the same representation for the part of the
electric force qsE expressed via the vector potential. Therefore, let us
demonstrate the explicit form ofX2 as follows:

X2 ¼ �
ð

dr0dp0

ðDrDpÞ2
ð
dt0
ð
DrDp

dndg
ð
Dr0Dp0

dn0dg0

�
X
i;j;j 6¼i

qiqj
msc2

@t vjðt0ÞGðt; t0; rþ n; r0 þ n0Þ �
dri � rp;idpidr0 jdp0 j:

(43)

Function X2 can be approximately represented in terms of two-
coordinate distribution functions after expansion on n and n0 as
follows:

X2 ¼ � 1
c2
qsqs0

ms
@a
p

ð
dr0dp0

ð
dt0
	
ð@tG0Þhhvai ðtÞii

þ ð@tGb
1Þ hhnbvaj ðt0Þii � hhn0bvaj ðt0Þii
� �

þ 1
2
ð@tGbc

2 Þ

� hhnbncvaj ðt0Þii þ hhn0bn0cvaj ðt0Þii � 2hhnbn0cvaj ðt0Þii
� �


;

(44)

where we use several two-coordinate functions, which are presented
via their correlationless limit in Appendix B [see Eqs. (B1)–(B8)].

Finally, we present the explicit form of the magnetic part of the
interparticle interaction,

X3 ¼ 1
c2
eabcecfg

1

ðDrDpÞ2
ð
dr0dp0

ð
dt0

�
ð
DrDp

dndg
ð
Dr0Dp0

dn0dg0
X
i;j;j 6¼i

qiqj
ms

vbi ðtÞvgj ðt0Þ

� @f
r Gðrþ n; r0 þ n0Þ �

dri � @a
p;idpidr0 jdp0 j: (45)

Here, we make the expansion on n and n0 and make the interpre-
tation of found terms via the two-coordinate distribution functions:

X3 ¼ 1
c2
qsqs0

ms
eabcecfg@a

p

ð
dr0dp0

ð
dt0
	
ð@f

rG0Þhhvbi ðtÞvgj ðt0Þii

þ ð@ f
rG

k
1Þ hhnkvbi ðtÞvgj ðt0Þii � hhn0kvbi ðtÞvgj ðt0Þii
� �

þ 1
2
ð@ f

rG
kl
2 Þ hhnknlvbi ðtÞvgj ðt0Þii þ hhn0kn0lvbi ðtÞvgj ðt0Þii
�

� 2hhnkn0lvbi ðtÞvgj ðt0Þii
�


; (46)

where we use no specific notations for the two-coordinate distribution
functions since we have many two-coordinate distribution functions.
We have no reason to use special symbols for each of them. We also
have following limits for these functions in the self-consistent field
approximation, which are presented via their correlationless limit in
Appendix B [see Eqs. (B9)–(B14)].

To conclude this section, we point out that we made the generali-
zation of Eq. (22) up to the account of the quadrupole moment distri-
bution function in the multipole expansion while Eq. (22) includes the
distribution of charger (and currents as well) in the monopole approxi-
mation. The presented generalization is demonstrated by four terms
labeled asX0; X1; X2, andX3. We consider the expansion on parame-
ters n and g. Formally, we have functions containing the increasing
degrees of these parameters. It leads to the convergent condition of the
expansion. Formally, we can state that there is a small parameter,
which allows the convergent of the expansion. Its existence shows that
we consider the small vicinity presenting a macroscopically infinitesi-
mally small area. The higher degrees of n appear in the distribution
function, but they appear as the expansion of the electromagnetic field
on n. So, we need to keep small the second dimensionless parameter
k > D1=3 � rDe, which is discussed after Eq. (23).

VI. SELF-CONSISTENT FIELD APPROXIMATION IN
THE MULTIPOLE APPROXIMATION FOR THE SCALAR
DISTRIBUTION FUNCTION EVOLUTION EQUATION

We consider the dynamics of charged particles. Therefore, the
mean-field or the self-consistent field approximation gives the major
contribution in the dynamics of systems. Hence, we consider all two-
coordinate distribution functions as the product of the corresponding
one-coordinate distribution functions. Therefore, we combine Eqs.
(36), (39), (44), and (46) represented in the self-consistent field
approximation and find the following equation for the scalar distribu-
tion function:

@t fsþ v �rfsþr� eFsþ qs Eþ 1
c
v�B

� �
� @fs
@p

þ qs @bEþ 1
c
v�@bB

� �
�@d

b
s

@p
þ qs @b@cEþ qs

c
v�@b@cB

� �
� @Qs

@p
þ qs

c
eabc Bc �@a;peFb

s þ @dBc � @a;pjbdD;sþ @d@f Bc �@a;pjbdfQ;s

� �
¼ 0;

(47)

where the velocity is extracted from functions jas ; j
ab
D;s, and j

abc
Q;s. We also

have E ¼ Eext þ Eint , and B ¼ Bext þ Bint .
The integral terms presenting the sources of the electromagnetic

field are written as Eint and Bint , while these functions obey the
Maxwell equations in accordance with the explicitly found integral
expressions for the electromagnetic field fEint ;Bintg via the one-
coordinate distribution functions:

r � Bint ¼ 0; r� Eint ¼ � 1
c
@tBint ; (48)

ðr�BintÞa ¼ 1
c
@tE

a
int þ

4p
c

X
s

qs

ð
jas ðr;p; tÞdpþ@b

ð
Jabs;Dðr;p; tÞdp

�
þ1
2
@b@c

ð
Jabcs;Q ðr;p; tÞdpþ�� �

�
; (49)
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r � Eint ¼ 4p
X
s

qs

ð
fsðr; p; tÞdpþ @b

ð
dbs ðr; p; tÞdp

�
þ 1
2
@b@c

ð
Qbc

s ðr; p; tÞdpþ � � �
�
: (50)

The self-consistent field approximation shows that all introduced dis-
tribution functions appear as the sources of the electromagnetic field
in the Maxwell equations.

VII. EQUATION FOR THE EVOLUTION OF THE DIPOLE
MOMENT DISTRIBUTION FUNCTION

Let us repeat the definition of the distribution function of dipole
moment

daðr; p; tÞ ¼ 1
D

1
Dp

ð
D;Dp

dndg
XN
i¼1

nadridpi: (51)

If we want to consider the evolution of the distribution function of
the dipole moment, we can consider the time derivative of func-
tion hnai (51). We can consider alternative function hraðtÞi
¼ raf ðr; p; tÞ þ hnai.

The time derivative of function (51) has the following structure:

@td
a þ @b

r hnavi;bðtÞi þ @b
phna _pi;bðtÞi ¼ 0: (52)

The second term in this kinetic equation can be represented via
functions (32) or (33). However, the last term in this equation requires
a longer discussion similar to the analysis of interaction in the Vlasov
equation presented above.

Substituting the time derivative of the momentum _pbi into Eq.
(52) [equation of motion of each particle is given by Eqs. (5)–(8)], we
obtain

@td
a þ @b

r J
ba
D þ qs hnaEb

extðrþ n; tÞ@b;pi þ 1
c
ebcdhnavci ðtÞBd

extðrþ n; tÞ@b;pi
	 


� qsqs0
ð
dr0dp0

ð
dt0hhnað@b

rGðt; t0; rþ n; r0 þ n0ÞÞ@b;pii � qsqs0

c2

ð
dr0dp0

ð
dt0hhnavbj ðt0Þð@tGðt; t0; rþ n; r0 þ n0ÞÞ@b;pii

þ qsqs0

c2
ebcdedfg

ð
dr0dp0

ð
dt0hhnavci ðtÞvgj ðt0Þð@f

rGðt; t0; rþ n; r0 þ n0ÞÞ@b;pii ¼ 0: (53)

Next, we make the expansion on n and n0 in order to get the multipole expansion. We keep terms up to the electric quadrupole moment and find

@td
a þ @b

r J
ba
D þ qs Eb

extðr; tÞ@b;phnai þ ð@c
rE

b
extðr; tÞÞ@b;phnanci þ

1
c
ebcdBd

extðr; tÞ@b;phnavci ðtÞi þ
1
c
ebcdð@f

rB
d
extðr; tÞÞ@b;phnanf vci ðtÞi

	 

� qsqs0

ð
dr0dp0

ð
dt0ð@b

rGðt; t0; r; r0ÞÞ@b;phhnaii � qsqs0
ð
dr0dp0

ð
dt0ð@b

r @
c
rGðt; t0; r; r0ÞÞ@b;phhnancii

þ qsqs0
ð
dr0dp0

ð
dt0ð@b

r @
c
rGðt; t0; r; r0ÞÞ@b;phhnan0cii �

qsqs0

c2

ð
dr0dp0

ð
dt0ð@tGðt; t0; r; r0ÞÞ@b;phhnavbj ðt0Þii

� qsqs0

c2

ð
dr0dp0

ð
dt0ð@t@c

rGðt; t0; r; r0ÞÞ@b;phhnancvbj ðt0Þii þ
qsqs0

c2

ð
dr0dp0

ð
dt0ð@t@c

rGðt; t0; r; r0ÞÞ@b;phhnan0cvbj ðt0Þii

þ qsqs0

c2
ebcdedfg

ð
dr0dp0

ð
dt0ð@f

rGðt; t0; r; r0ÞÞ@b;phhnavci ðtÞvgj ðt0Þii þ
qsqs0

c2
ebcdedfg

ð
dr0dp0

ð
dt0ð@f

r@
l
rGðt; t0; r; r0ÞÞ@b;phhnanlvci ðtÞvgj ðt0Þii

� qsqs0

c2
ebcdedfg

ð
dr0dp0

ð
dt0ð@f

r@
l
rGðt; t0; r; r0ÞÞ@b;phhnan0lvci ðtÞvgj ðt0Þii ¼ 0: (54)

The two-coordinate distribution functions are presented as the double brackets of the corresponding values with no usage of specific notations
since part of them are introduced above, while part of them get no specific notation. Here, we make the transition to the self-consistent field
approximation. To this end, we split the two-coordinate distribution functions on the product of one-coordinate distribution functions (we do it in
the same way as it is done above for the equation of evolution of the scalar distribution function)

@td
a þ @b

r J
ba
D þ qsð@b;pdaÞ Eb

extðr; tÞ � qs @b
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þf ðr0; p0; t0Þ þ 1

c2

ð
dr0dp0

ð
dt0@tGðt; t0; r; r0Þhvbj ðt0Þiðr0; p0Þ

� �	
þ qs@

c
r @b

r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þdcðr0; p0; t0Þ þ 1

c2

ð
dr0dp0

ð
dt0@tGðt; t0; r; r0ÞJbcD ðr0; p0; t0Þ

� �

þ qsð@b;pqacÞ @c;rE

b
extðr; tÞ � qs@c;r @b

r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þf ðr0; p0; t0Þ þ 1

c2

ð
dr0dp0

ð
dt0@tGðt; t0; r; r0Þhvbj ðt0Þiðr0; p0Þ

� �	 
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þ qs
c
ebcdð@b;pJcaD Þ Bd

ext þ
qs0

c
edfg@f ;r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þhvgj ðt0Þiðr0; p0Þ � @l;r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0ÞJglD ðr0; p0; t0Þ

� �	 

þ qs

c
ebcdð@b;pJcafQ Þ @f ;rB

d
ext þ

qs0

c
edfg@f ;r@l;r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þhvgj ðt0Þiðr0; p0Þ

	 

¼ 0: (55)

On this stage, we can introduce the averaged scalar and vector potentials of the electromagnetic field and corresponding representation of the
integral terms within Eint and Bint . This electromagnetic field obeys the Maxwell equations (48)–(50).

Finally, Eq. (55) is represented in terms of Eint and Bint as follows:

@tda þ @b
r J

ba
D þ qsð@b

pd
aÞEb þ qsð@b

pq
acÞ@c

rE
b þ qs

c
ebcdð@b

pJ
ca
D ÞBd þ qs

c
ebcdð@b

pJ
caf
Q Þ@f

rB
d ¼ 0: (56)

VIII. EQUATION FOR THE DISTRIBUTION FUNCTION OF VELOCITY

Let us repeat the definition of the considering vector distribution function (11)

jðr; p; tÞ � hviðtÞi � 1
D

1
Dp

ð
D;Dp

dndg
XN=2

i¼1

viðtÞdridpi: (57)

If we consider the evolution of function (57), we would have four terms in the initial form of the kinetic equation

@t jðr; p; tÞ ¼ @thviðtÞi ¼ h _v iðtÞi � @b
r hviðtÞvbi ðtÞi � @b

phviðtÞ _pbi ðtÞi: (58)

However, we can represent the velocity of each particle viðtÞ via parameters p and g, which do not depend on time [see Eq. (12)]

@tjðr; p; tÞ ¼ @thv þ Dvi ¼ �@b
r hviðtÞvbi ðtÞi � @b

phviðtÞ _pbi ðtÞi: (59)

Equation (58) can be simplified to Eq. (58) using the kinetic equation for the scalar distribution function f ðr; p; tÞ.
We consider Eq. (59) in more detail

@t j
aðr; p; tÞ þ @b

r hvai ðtÞvbi ðtÞi þ qs@
b
phvai Eb

i ðrþ nÞ þ ebcdvai v
c
i B

d
i ðrþ nÞi � qsqs0

ð
dr0dp0

ð
dt0hhvai ðtÞ@b

r Gðt; t0; rþ n; r0 þ n0Þ@b
pii

� qsqs0

c2

ð
dr0dp0

ð
dt0hhvai ðtÞvbj ðt0Þ@tGðt; t0; rþ n; r0 þ n0Þ@b

pii þ
qsqs0

c2
ebcdedfg

ð
dr0dp0

ð
dt0

� hhvai ðtÞvci ðtÞvgj ðt0Þ@f
r Gðt; t0; rþ n; r0 þ n0Þ@b

pii ¼ 0: (60)

Next, we represent Eq. (60) via the multipole expansion

@t j
aðr; p; tÞ þ @b

r hvai ðtÞvbi ðtÞi þ qs Ebðr; tÞ@b
phvai i þ ð@c

rE
bÞ@b

phvai nci þ ebcdBd@b
phvai vci i þ ebcdð@f BdÞ@b

phvai vcinf i
� �

� qsqs0
ð
dr0dp0

ð
dt0@b

r Gðt; t0; r; r0Þ@b
phhvai ðtÞii � qsqs0

ð
dr0dp0

ð
dt0@b

r @
c
rGðt; t0; r; r0Þ@b

phhncvai ðtÞii

þ qsqs0
ð
dr0dp0

ð
dt0@b

r @
c
rGðt; t0; r; r0Þ@b

phhn0cvai ðtÞii �
qsqs0

c2

ð
dr0dp0

ð
dt0@tGðt; t0; r; r0Þ@b

phhvai ðtÞvbj ðt0Þii

þ qsqs0

c2
ebcdedfg

ð
dr0dp0

ð
dt0@f

r Gðt; t0; r; r0Þ@b
phhvai ðtÞvci ðtÞvgj ðt0Þii þ

qsqs0

c2
ebcdedfg

ð
dr0dp0

ð
dt0

� @f
r @

h
r Gðt; t0; r; r0Þ@b

phhvai ðtÞvci ðtÞvgj ðt0Þnhii ¼ 0: (61)

Finally, we present Eq. (61) in the self-consistent field approximation

@t j
aðr; p; tÞ þ @b

r hvai ðtÞvbi ðtÞi þ qs Eb
extðr; tÞ@b

phvai i þ ð@c
rE

b
extÞ@b

phvai nci þ ebcdðBd
ext@

b
phvai vci i þ ð@f BdÞ@b

phvai vcinf iÞ
� �

� qsqs0 ð@b
p j

aÞ@b
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þf ðr0; p0; t0Þ � qsqs0 ð@b

p J
ac
D Þ@b

r @
c
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þf ðr0; p0; t0Þ

þ qsqs0 ð@b
p j

aÞ@b
r @

c
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þdcðr0; p0; t0Þ � qsqs0

c2
ð@b

p j
aÞ@t

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þjcðr0; p0; t0Þ

þ qsqs0

c2
ebcdedfgð@b

phvai ðtÞvci ðtÞiÞ@f
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þjgðr0; p0; t0Þ þ qsqs0

c2
ebcdedfgð@b

phvai ðtÞvci ðtÞnhiÞ

� @f
r @

h
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þjgðr0; p0; t0Þ ¼ 0; (62)
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where we use several two-coordinate functions, which are presented
via their correlationless limit in Appendix B [see Eqs. (B15)–(B20)].

Finally, we introduce electric Eint and magnetic Bint fields caused
by the charges of the system and present the kinetic equation for the
velocity distribution function in compact form:

@t j
a þ @b

r hvai ðtÞvbi ðtÞi þ qsE
b@b

r j
a þ qsð@c

rE
bÞ@b

pJ
ac
D

þ qs
c
ebcd Bd@b

phvai ðtÞvci ðtÞi þ ð@f BdÞ@b
phvai ðtÞvci ðtÞnf i

h i
¼ 0:

(63)

IX. ON THE EXTENDED CLOSED SET OF KINETIC
EQUATIONS CONTAINING SCALAR AND VECTOR
DISTRIBUTION FUNCTIONS

Evolution equations for f ðr; p; tÞ; daðr; p; tÞ and jaðr; p; tÞ [see
Eqs. (47), (56), and (63)] give an incomplete set of equations. This set
requires additional assumptions to make final truncation.

Let us repeat Eqs. (47), (56), and (63) together to make an addi-
tional analysis of these equations

@t f þ v �rf þr� eFþ qs Eþ 1
c
v�B

� �
� @f
@p

þ qs @bEþ 1
c
v�@bB

� �
�@d

b
s

@p
þ qs @b@cEþ qs

c
v� @b@cB

� �
�@Q

bc

@p
þ qs

c
eabc Bc �@a;peFbþ@dBc �@a;pjbdD þ@d@f Bc � @a;pjbdfQ

� �
¼ 0;

(64)

and

@td
a þ @b

r J
ba
D þ qsð@b

pd
aÞEb þ qsð@b

pQ
acÞ@c

rE
b

þ qs
c
ebcdð@b

pJ
ca
D ÞBd þ qs

c
ebcdð@b

pJ
caf
Q Þ@f

rB
d ¼ 0; (65)

and

@t j
a þ @b

r hvai ðtÞvbi ðtÞi þ qsE
b@b

r j
a þ qsð@c

rE
bÞ@b

pJ
ac
D

þ qs
c
ebcd Bd@b

phvai ðtÞvci ðtÞi þ ð@f BdÞ@b
phvai ðtÞvci ðtÞnf i

h i
¼ 0:

(66)

Here, we have equations for three distribution functions f, da, and
ja ¼ vaf þ eFa

, but we have a number of other distribution functions
like Qbc, JbcD ; J

bcd
Q , hvai ðtÞvci ðtÞi, and hvai ðtÞvci ðtÞnf i. We need to obtain

the closed set of equations at this step. Before we make this truncation,
we need to provide a discussion of the physical picture hidden in these
functions.

A. On covariant form of equations of motion

If we consider the dynamics of a single particle moving with
velocity up to the speed of light, we can write the non-covariant form
of the equation of motion dp=dt ¼ qðEþ v � B=c, where
p ¼ mv=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
is the relativistic momentum. On the other

hand, it can be represented in the covariant form m€n
l ¼ ðq=cÞFl� _n� ,

where nl ¼ ðct; rÞ is the four-dimensional coordinate, Fl� is the ten-
sor of electromagnetic field, and the dot above the symbol denotes the
derivative on the proper time s. Particularly, we have _t ¼ dt=ds

¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p ¼ �=mc2, where � is the energy of the particle. Let
us mention the structure of Fl� ¼ @lA� � @�Al with Al ¼ ðu;AÞ is
the four-vector of potential of the electromagnetic field, which is com-
posed of the scalar potential u and vector potential A. The covariant
(under the Lorentz transformations) form of equations is preferable
form of the relativistic equations. However, it is not always used. We
mention it in order to specify that we consider non-covariant forms of
relativistic kinetic equations. We believe that it is possible to make fur-
ther generalization of presented formalism. So, the construction of the
D-vicinity in the four-dimensional space–time will provide the
required result. Here, we restrict the relativistic effects like dependence
of the momentum of the particle on the velocity p ¼ mv=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
and the consideration of the full electromagnetic potentials including
the retarding of the electromagnetic interactions.

B. Kinetic theory of fluctuations

Considering transition from the kinetic theory (the field form of
the classical mechanics in the six-dimensional space) to the hydrody-
namic theory (the field form of the classical mechanics in the three-
dimensional space), we get the number density of particles nðr; tÞ
¼ Ð f ðr; p; tÞdp and the current of particles jðr; tÞ ¼ nðr; tÞvðr; tÞ
¼ Ð vf ðr; p; tÞdp. The difference v � vðr; tÞ is the measure of chaotic
motion, which can be associated with the thermal motion. This inter-
pretation gets closer to the thermodynamic temperature if the system
gets through the process of thermalization. For the quantum systems,
we also need to include other than the thermal mechanisms for the
symmetric distribution of particles over the quantum states in the
momentum space. Major contribution is given by the Pauli blocking
existing in systems of fermions.

The average velocity
Ð
vf ðr; p; tÞdp gives the velocity field. The

deviation from the average velocity v � vðr; tÞ leads to other hydrody-
namic functions, like the temperature scalar field, the pressure tensor field,
etc. These functions are also smooth functions which are defined on a cer-
tain scale. It leaves the question: how fluctuations can appear in our
model? Since the fluctuations is the natural phenomenon following from
the individual motion of particles governed by the microscopic equations.

Basically, the chaotic motion of particles gives small variation of
macroscopic functions due to the continuous unequal exchange of par-
ticles between nearest vicinities. Hence, the number density nðr; tÞ
¼ Ð f ðr; p; tÞdp (2), the distribution function f ðr; p; tÞ (4), etc., show
small variation over time and coordinate. These fluctuations can be
considered via the correlations like the space correlations

nðr; tÞnðr0; tÞ or the time correlations gnðr; tÞnðr; t0Þ, where we intro-
duce an additional average on the macroscopic space scale
A ¼ ð1=DVÞÐDVAdV or the average over the interval of time DT :eA ¼ ð1=DTÞÐDTAdt.

The distribution function is constructed on a certain scale in the
coordinate and momentum space. If we want to trace the deviation
from the average (particularly in the momentum space), we need to
focus our attention on the deviation of momentum of all particles in
D-vicinity from the middle point of the vicinity g. Parameter DviðtÞ is
also associated with g. If we imagine a D-vicinity with five particles (it
is an imaginary example, for the illustration, see Fig. 2, real vicinity
contains a large number of particles), we can count the average
momentum p ¼ ð1=5ÞP5

i¼1 piðtÞ 6¼ p and we get a deviation from p
(the moment of the center of the vicinity). However, the distribution
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function f ðr; p; tÞ counts all these particles as the particles with the
momentum p. In other words,

P5
i¼1 gi 6¼ 0 (in general, g is a parame-

ter scanning the vicinity, but here we introduce a particular gi as
giðtÞ ¼ piðtÞ � p the deviation of momentum of the particle being in
the vicinity from the momentum of the center of vicinity). This exam-
ple shows that the physical nature of fluctuations can be presented via
functions hgai and hgagbi (or hDvai ðtÞi and hDvai ðtÞDvbi ðtÞi). It
explains the necessity of the account of these functions in our model.
We consider the evolution equation for function hDvai ðtÞi, while func-
tion hDvai ðtÞDvbi ðtÞi is assumed to be approximately expressed via
functions f ðr; p; tÞ and hDvai ðtÞi. Here, we introduce an equation of
state in order to make a truncation of the set of kinetic equations (in
addition to the self-consistent field approximation).

In the chosen moment of time t, we have hDvii 6¼ 0. However,
the fluctuations happen on some timescale s, which can be associated
with the time of propagation of the average particle via the D-vicinity:
s ¼ ffiffiffiffi

D3
p

=v0, where the average velocity of the Dp-vicinity is
v0 ¼ pc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

s c
2

p
. We can go further and make the averaging of

the kinetic equation over this time interval ea ¼ ð1=sÞ Ð s0 adt. Here, we
find ghDvii ¼ 0, but ghDvai Dvbi i 6¼ 0. As an estimation, we can choose

Dvi;max ¼
ffiffiffiffiffi
Dv

3
p ¼ ffiffiffiffiffiffi

Dp
3
p

c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp

3
p

2 þm2
s c

2
q

.

C. Truncation method

Let us consider the simplified form of the kinetic equation for the
vector distribution function of velocity (62). Function jaðr; p; tÞ can be
represented via two other functions introduced above jaðr; p; tÞ
¼ va � f ðr; p; tÞ þ eFaðr; p; tÞ. Equation (62) includes function
hvai ðtÞvbi ðtÞi ¼ hðva þ Dvai Þðvb þ Dvbi Þi ¼ vavbh1i þ vahDvbi i þ vb hDvai i
þhDvai Dvbi i ¼ vavbf ðr; p; tÞ þ vaeFbðr; p; tÞ þ vbeFaðr; p; tÞ þhDvai Dvbi i.
Here, we extract the velocity from functions jas ; j

ab
D;s; hvai ðtÞvbi ðtÞi, and

jabcQ;s to show the Lorentz force in a more familiar way. It helps us to

make the truncation as well. Finally, we represent hvai ðtÞvbi ðtÞnci
¼ vavbhnci þ vahDvbi nci þ vbhDvai nci þ hDvai Dvbi nci.

Our model includes the multipole moments in the coordinate
and momentum spaces, like da and eFa

. The multipole moments are
defined on the scale of the D-vicinity. Therefore, they appear to be
small. On the macroscopic scale this value tends to zero. Hence, we
can introduce the small parameter e to indicate the relative value of
these functions. We find da � ef ; eFa � ef ; Qab � e2f , jab � e2f , etc.
To make the truncation, we need to estimate the high-rank tensor
distribution functions included in the model Qab ¼ hnanbi
¼ dab

ffiffiffiffiffiffi
D23

p
f ðr; p; tÞhDvaDvbi ¼ dab

ffiffiffiffiffiffi
D2
v

3

q
f ðr; p; tÞ, and jabD

¼ dab
ffiffiffiffiffiffiffiffiffi
DDv

3
p

f ðr; p; tÞ. The third rank tensors are neglected. Function
hDvaDvbi is symmetric, so it is reasonable to be proportional to dab.
However, function jabD is not symmetric, but we assume that the devia-
tions of the same projections of the coordinate and the momentum
can be correlated. This correlation can be included in the model via
nonzero value of jabD , which can be traced in calculations of any specific
problem. Further comparison with experiment can show the validity
of our assumption. If no correlation is found, this function can be con-
sidered equal to zero in the future modification of the model.

We start the discussion of Eqs. (64)–(66) with the first of them
(64). We can extract terms proportional to the zero degree of the small
parameter e,

@t f þ v � rf þ qs Eþ 1
c
v � B

� �
� @f
@p

; (67)

which correspond to the well-known Vlasov equation. Next, we pre-
sent terms proportional to the first degree of the small parameter e,

qs @bEþ 1
c
v � @bB

� �
� @d

b
s

@p
þr � eF þ qs

c
eabcBc � @a;peFb

: (68)

Other terms in Eq. (64) correspond to the second and third degree of
the small parameter e. They are neglected since we include the first
correction to the Vlasov equation.

Next we consider Eq. (65). The lowest order on parameter e is
equal to one in this equation. We consider the lowest order and one
correction to it. Let us show terms existing in the lowest order

@td
a þ ðv � rÞda þ qsð@b

pd
aÞEb þ qs

c
ebcdvcð@b

pd
aÞBd; (69)

and in the next order

@b
r j

ba
D þ qs

c
ebcdð@b

pj
ca
D ÞBd þ qsð@b

pQ
acÞ@c

rE
b þ qs

c
ebcdvcð@b

pQ
af Þ@f

rB
d:

(70)

Let us consider Eq. (66). Function ja splits on two terms vaf þ eFa
.

Obviously, Eq. (66) contains the contribution of terms (67) and (68)
multiplied by va. Hence, all these terms are equal to zero in accordance
with the evolution equation of the scalar distribution function. After this
simplification, we find that the lowest order of terms in Eq. (66) on the
parameter e is equal to one. It contains the following terms:

@teFa þ ðv � rÞeFa þ qsE
b@b

p
eFa þ qs

c
ebcdvcBd@b

p
eFa

: (71)

In the next order on e, we obtain

@b
r hDvaDvbi þ qsð@c

rE
bÞ@b

p j
ac
D

þ qs
c
ebcdBd@b

phDvaDvci þ
qs
c
ebcdvcð@f

rB
dÞ@b

pj
af
D : (72)

FIG. 2. The illustration of the Dp-vicinity in the momentum space with few num-
bered particles being in the vicinity. Here, p is the center of the vicinity, g is the vec-
tor scanning the vicinity, piðtÞ are the momentums of particles, p is the average
value of the momentum of particles being in the vicinity, while vector p differs from
the center of the vicinity p.
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In this section, we introduce three kinds of correlations. First, it is
the coordinate-coordinate correlationQab ¼ hnanbi ¼ dab

ffiffiffiffiffiffi
D23

p
f ðr; p; tÞ.

Second, it is the momentum-momentum correlation hDvaDvbi
¼ dab

ffiffiffiffiffiffi
D2
v

3

q
f ðr; p; tÞ. Finally, it is the coordinate-momentum correlation

jabD ¼ dab
ffiffiffiffiffiffiffiffiffi
DDv

3
p

f ðr; p; tÞ. Below, we present our results for the dynamic
of the small amplitude perturbations, which shows that the coordinate-
momentum correlation leads to an nonphysical instability (at the analysis
of the dispersion dependence of the Langmuir waves). Therefore, we
assume below that there is no coordinate-momentum correlation jabD ¼ 0.
This nonphysical part is not demonstrated below.

D. Final set of kinetic equations

Let us combine together the final parts of Eqs. (64)–(66) with the
equations of state

@t f þ v � rf þ qs Eþ 1
c
v � B

� �
� @f
@p

þ qs @bEþ 1
c
v � @bB

� �
� @d

b
s

@p
þr � eF þ qs

c
eabcBc � @a;peFb ¼ 0;

(73)

@td
a þ ðv � rÞda þ qsð@b

pd
aÞEb þ qs

c
ebcdvcð@b

pd
aÞBd

þ qs
ffiffiffiffiffiffi
D23

p
ð@b

pf Þ@a
r E

b þ qs
c

ffiffiffiffiffiffi
D23

p
ebcdvcð@b

pf Þ@a
r B

d ¼ 0; (74)

and

@teFa þ ðv � rÞeFa þ qsE
b@b

p
eFa þ qs

c
ebcdvcBd@b

p
eFa

þ
ffiffiffiffiffiffi
D2
v

3

q
@a
r f �

qs
c

ffiffiffiffiffiffi
D2
v

3

q
eabdBd@b

pf ¼ 0: (75)

The electromagnetic field in Eqs. (73)–(75) obeys the following
Maxwell equations:

r � Bint ¼ 0; r� Eint ¼ � 1
c
@tBint ; (76)

ðr � BintÞa ¼ 1
c
@tE

a
int þ

4p
c

X
s

qs

ð
vafsðr; p; tÞdp

�
þ@b

ð
vadbs ðr; p; tÞdpþ

ð eFa
s ðr; p; tÞdp

�
; (77)

r � Eint ¼ 4p
X
s

qs

ð
fsðr; p; tÞdpþ @b

ð
dbs ðr; p; tÞdp

�
þ 1
2

ffiffiffiffiffiffi
D23

p
@b@b

ð
f ðr; p; tÞdp

�
; (78)

which appear as corresponding modification of Eqs. (48)–(50).
Reference 45 is focused on the method of microscopic justifica-

tion of the Vlasov kinetic equation and the hydrodynamic equations
for the plasmas. It contains the justification of the mean-field approxi-
mation in terms of the deterministic viewpoint. So, it gives a novel
background for the well-known models. The appearance of “novel”
functions related to the electric dipole moment of the physically infini-
tesimal volume is demonstrated in Ref. 45, but their contribution is
dropped. In this paper, we focus on the contribution of the novel func-
tion and on the construction of the closed model, which is a

generalization of the Vlasov kinetic equation. This model is derived
using methods developed in Ref. 45.

X. THE SPIN-ELECTRON-ACOUSTIC WAVES
PROPAGATION IN THE SPIN POLARIZED ELECTRON
GAS OF HIGH DENSITY

The degenerate macroscopically motionless (being in the equilib-
rium state) electron gas is described via the Vlasov kinetic equation for
each spin projection of electrons30

@t fs þ v � rfs þ qs Eþ 1
c
v � B

� �
� @fs
@p

¼ 0: (79)

Subindex s corresponds to the electrons with the spin-up s ¼" or spin-
down s ¼#. We consider the small perturbations of the equilibrium
state fs ¼ f0s þ dfs, where f0s is the equilibrium distribution function,
and dfs is the perturbation of the distribution function, which is chosen
as the plane wave in the coordinate space dfs ¼ Fse�ixtþikzz , with the
constant amplitude Fs. It leads to the linearized kinetic equation

�iðx� kzvzÞdfs þ qsdE � @f0s
@p

¼ 0; (80)

where dB ¼ 0 for the longitudinal waves.
Equilibrium distribution functions for each subspecies of elec-

trons is chosen as the Fermi step f0s ¼ hðpFs � pÞ=ð2p�hÞ3, where
pFs ¼ ð6pn0sÞ1=3�h is the radius of the Fermi sphere in the momentum
space for species s.

We consider the longitudinal waves; hence, the perturbation of
the electric field is parallel to the direction of the wave propagation
k k dE.

Equation (80) gives the expression for the perturbation of the dis-
tribution function of electrons

dfs ¼ �iqsðv � dEÞ @f0s
@e

1
x� kzvz

; (81)

where

@f0s
@e

¼ @f0s
@p

@p
@e

¼ � 1

ð2p�hÞ3 dðp� pFsÞ e
pc2

: (82)

Expression (81) allows us to calculate the perturbations of the
number density of the degenerate electrons

dns ¼
ð
dfsðr; p; tÞdp

¼ � 2piqsp2FsdEz
ð2p�hÞ3kzvFs

2þ x
kzvFs

ln
x� kzvFs
xþ kzvFs

� �	 

: (83)

It leads to the dispersion equation

1þ 3
2
x2

Le

k2z c
2

X
s¼u;d

n0s
n0e

cFs
m2

s c
2

p2Fs
2þ x

kzvFs
ln

x� kzvFs
xþ kzvFs

� �	 

¼ 0: (84)

The presented dispersion equation is found for the motionless
ions, but we have two species of particles: the spin-up electrons and
the spin-down electrons. Both species of electrons are degenerate, but
they have different equilibrium number densities. So, we have nonzero
equilibrium spin polarization. The spin polarization is caused by the
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external magnetic field. However, it is not included in Eq. (80), since it
does not affect the final result (81) for the waves propagating parallel
to the magnetic field.

Equation (84) gives two solutions: the Langmuir wave and the
SEAW. The SEAW has been studied in different regimes and using
different methods. It is considered within the nonrelativistic hydrody-
namics,29 the nonrelativistic kinetics,30 and the relativistic hydrody-
namics.41 Here, we present the relativistic kinetic theory of the SEAW.
The numerical analysis of Eq. (84) shows that the dispersion depen-
dencies of the Langmuir wave and the SEAW get close to each other at
the large wave vectors, which leads to an instability in the short-
wavelength limit. However, it can be subject of another work specified
on the instabilities in the degenerate plasmas related to the SEAWs,
while this paper is focused on the derivation of the extended kinetic
model.

XI. LANGMUIR WAVES AND SEAWs UNDER
INFLUENCE OF THE DIPOLAR DISTRIBUTION
FUNCTION EVOLUTION

In this section, we consider the same equilibrium condition like
in Sec. X. However, we consider the dynamics of the vector distribu-
tion functions. We also assume db0s ¼ 0 and eFa

0s ¼ 0. We choose this
equilibrium condition since we do not suggest any physical mecha-
nisms to create nonzero values of these functions in the equilibrium.

Let us present the linearized kinetic equations on the small ampli-
tude perturbations for the monochromatic plane waves:

�iðx� kzvzÞdfs þ qsdE � @f0s
@p

þr � deF ¼ 0; (85)

�iðx� kzvzÞdda þ qs
ffiffiffiffiffiffi
D23

p
ð@b

pf0sÞ@a
r dE

b ¼ 0; (86)

and

�iðx� kzvzÞdeFa þ
ffiffiffiffiffiffi
D2
v

3

q
@a
r dfs ¼ 0: (87)

We also present the linearized form of the Poisson equation

ikzdEz ¼ 4pqe
X
s

1� 1
2

ffiffiffiffiffiffi
D23

p
k2z

� �ð
dfsdpþ ikz

ð
ddzs dp

	 

: (88)

Equations (85)–(87) give the following expressions for the pertur-
bations of the distribution functions:

deF ¼
ffiffiffiffiffiffi
D2
v

3

q
rdfs

iðx� kzvzÞ ; (89)

ddzs ¼
qs

ffiffiffiffiffiffi
D23

p
kzdEz @f0s

@pz
ðx� kzvzÞ ; (90)

and

dfs ¼
qdEz

@f0s
@pz

iðx� kzvzÞ
1

1�
ffiffiffiffiffiffi
D2
v

3

q
k2z

ðx� kzvzÞ2

: (91)

Substituting solutions (89)–(91) in the linearized Poisson equa-
tion (88) gives the dispersion equation for the longitudinal waves as

� 4pq2e
X
s

1� 1
2

ffiffiffiffiffiffi
D23

p
k2z

� �ð ðx� kzvzÞ @f0s
@pz

ðx� kzvzÞ2 � k2z

ffiffiffiffiffiffi
D2
v

3

q
0BB@

1CCAdp

2664

þ k2z
ffiffiffiffiffiffi
D23

p ð @f0s
@pz

ðx� kzvzÞ dp

3775 ¼ kz: (92)

In Eq. (92), we see the contribution of the vector distribution

functions via coefficients
ffiffiffiffiffiffi
D23

p
and

ffiffiffiffiffiffi
D2
v

3

q
. Moreover, Eqs. (89) and (90)

show that the perturbations of the vector distribution functions are

proportional to
ffiffiffiffiffiffi
D23

p
or

ffiffiffiffiffiffi
D2
v

3

q
.

We substitute the equilibrium distribution function [see Eq. (82)
and text above Eq. (81)] and integrate over the module of momentum
p and angle u,X
s

3
2

1
cFsvFs

x2
Ls 1� 1

2

ffiffiffiffiffiffi
D23

p
k2z

� �ð ðx� kzvFs coshÞcosh sinhdh
ðx� kzvFs coshÞ2 � k2z

ffiffiffiffiffiffi
D2
v

3

q0@ 1A24
� k2z

ffiffiffiffiffiffi
D23

p ð
cosh sinhdh

ðx� kzvFs coshÞ

35¼ kz ; (93)

where eFs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2Fsc

2 þm2
e c

4
p ¼ cFsmec2.

After integration, we obtain the following form of the dispersion
equation: X

s

3
2

1
cFsv

2
Fs
x2

Ls 1� 1
2

ffiffiffiffiffiffi
D23

p
k2z

� �	

� 2þ
ffiffiffiffiffi
Dv

3
p

kz
2kzvFs

ln
x2 � ðkzvFs �

ffiffiffiffiffi
Dv

3
p

kzÞ2
x2 � ðkzvFs þ

ffiffiffiffiffi
Dv

3
p

kzÞ2
 !"

þ x
2kzvFs

ln
ðx� kzvFsÞ2 �

ffiffiffiffiffiffi
D2
v

3

q
k2z

ðxþ kzvFsÞ2 �
ffiffiffiffiffiffi
D2
v

3

q
k2z

0B@
1CA
375

� k2z
ffiffiffiffiffiffi
D23

p
2þ x

kzvFs
ln

x� kzvFs
xþ kzvFs

� �	 


¼ �k2z ; (94)

which is a generalization of Eq. (84).
In order to consider the Langmuir waves and SEAWs we need to

derive two different limits of Eq. (94).

A. Langmuir waves under influence of the dipolar
distribution function evolution

To obtain the dispersion dependence of the Langmuir waves
from Eq. (94), we need to consider the high-frequency regime
x 
 kzvFs. However, we have additional combination of parametersffiffiffiffiffi
Dv

3
p

kz , which should be compared with x and kzvFs. Parameter
ffiffiffiffiffi
Dv

3
p

is introduced as a small value in comparison with the characteristic
velocity of the system vFs. Therefore, we have x 
 kzvFs 


ffiffiffiffiffi
Dv

3
p

kz . It
leads to

ln
x2 � ðkzvFs �

ffiffiffiffiffi
Dv

3
p

kzÞ2
x2 � ðkzvFs þ

ffiffiffiffiffi
Dv

3
p

kzÞ2
 !

� 4
kzvFs
x

ffiffiffiffiffi
Dv

3
p

kz
x
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and

ln
ðx� kzvFsÞ2 �

ffiffiffiffiffiffi
D2
v

3

q
k2z

ðxþ kzvFsÞ2 �
ffiffiffiffiffiffi
D2
v

3

q
k2z

0B@
1CA

� �4
kzvFs
x

� 1þ 1
3
k2zv

2
Fs

x2
þ

ffiffiffiffiffiffi
D2
v

3

q
k2z

x2
þ 1
5
k4zv

4
Fs

x4

 !
:

Let us also remind the expansion existing for the logarithm in the last
term

ln
x� kzvFs
xþ kzvFs

� �
� �2

kzvFs
x

1þ 1
3
k2zv

2
Fs

x2
þ 1
5
k4zv

4
Fs

x4

� �
:

We substitute these expansions in the dispersion equation (94)
and find the dispersion equation for the Langmuir waves in the long-
wavelength limit as

1 ¼ 1
x2

X
s

1� 3
2

ffiffiffiffiffiffi
D23

p
k2z

� �
x2

Ls

cFs
1þ 3

5
k2zv

2
Fs

x2

� �
: (95)

Two groups of terms in Eq. (94) are combined together. It leads to the
change of coefficient in front of

ffiffiffiffiffiffi
D23

p
from 1/2 to 3/2. We also see that

the contribution of
ffiffiffiffiffiffi
D2
v

3

q
is canceled in the considered approximation.

In the zeroth order on kz, we find x2 ¼ x2
Ls=cFs. The contribution of

small corrections in the second order on k2z is found as

x2 ¼ x2
Le

cFe
1� 3

2

ffiffiffiffiffiffi
D23

p
k2z

� �
þ 3
5
k2zv

2
Fe: (96)

The contribution of
ffiffiffiffiffiffi
D23

p
leads to the decrease in the group velocity

related to the Fermi pressure/Pauli blocking given by the last term.
The estimation of the delta-vicinity is given in Ref. 45 for two

regimes. First, the hydrodynamic regime requires the number density
to be a continuous function. It leads to

ffiffiffiffi
D3

p � ffiffiffiffiffiffiffi
arD

p
, where a is the

average interparticle distance a � n�1=3
0e , and rD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=ð8pn0ee2Þ
p

is
the Debye radius, for the nondegenerate systems. The temperature of
the system T can be replaced with the Fermi temperature TFe¼ EFe for
the degenerate systems, where EFe is the Fermi energy (for the nonrela-
tivistic systems, in the relativistic case we need to exclude the rest
energy TFe ¼ EFe �mec2). In the second (kinetic) regime, we require
the distribution function to be a continuous function. Basically, it
means that the number density should be a continuous function for an
interval of velocities. It leads to the larger volume of the delta-vicinity
in the coordinate space

ffiffiffiffiffiffiffiffi
Dkin

3
p � rD. It also corresponds to estimation

given by Klimontovich.1

Using these estimations of the delta-vicinity, we can rewrite
Eq. (96) in the dimensionless form for the kinetic regime

w2 ¼ 1
cFe

1� 3
2
r2Dx

2
Le

v2Fe
j2

� �
þ 3

5j
2, where the contribution of the delta-

vicinity is maximal, w ¼ x=xLe is the dimensionless frequency, and
j ¼ kzvFe=xLe is the dimensionless wave vector module.

The Debye radius has different expressions in the relativistic and
nonrelativistic regimes. Let us start with the nonrelativistic regime,
where EFe ¼ mev2Fe=2 and r2Dx

2
Le=v

2
Fe ¼ 1=4. Hence, the dispersion

dependence simplifies to w2 ¼ 1þ 3
5 � 3

8

 �
j2, where the term propor-

tional to 3/8 is caused by the delta-vicinity contribution. Let us repeat
that we consider the maximal value for the delta-vicinity volume. If we

make reestimation for the hydrodynamic regime, we get the additional

small parameter in the last term w2 ¼ 1þ 3
5 � 3

8
a
rD

� �
j2.

Next, we consider the relativistic regime and choose the maximal
value of the delta-vicinity volume. In this regime, we have
EFe ¼ cFemec2 and

r2Dx
2
Le

v2Fe
¼ ð1=2ÞðcFe � 1Þðv2Fe=c2Þ�1.

In Fig. 3, we present the numerical analysis of the dimensionless
form of Eq. (96) for the kinetic regime w2 ¼ 1

cFe
½1� 3

4 ðcFe � 1Þ
� v2Fe

c2

� ��1

j2� þ 3
5 j

2. Figure 4 specifies the change of the coefficient in

front of j2. The presented results show that the maximal estimation of

FIG. 4. The dimensionless form of the dispersion dependence of the Langmuir
waves can be represented as n2 ¼ 1

cFe
þ U2

eff j
2. Effective velocity Ueff as the func-

tion of the dimensionless concentration q ¼ pFe=mec � n1=30e is plotted here. The
upper red dashed line corresponds to the zero contribution of the delta-vicinity
U2
eff ¼ 3=5. The lower continuous line corresponds to the contribution of the delta-

vicinity in accordance with Eq. (96) for the maximal estimation of value offfiffiffiffiffiffiffiffi
Dkin

3
p � rD in the kinetic regime.

FIG. 3. The dispersion dependence of Langmuir waves is presented as the depen-
dence of the dimensionless frequency w ¼ x=xLe on the dimensionless wave vec-
tor j ¼ kzvFe=xLe. It is presented for two values of the number density. The value
n1 ¼ 1022 cm�3 corresponds to nonrelativistic regime. It is presented by blue
(upper dashed) and red (upper continuous) lines. The value n2 ¼ 2:7� 1028 cm�3

demonstrates the contribution of the relativistic effects. It is presented by black
(lower dashed) and green (lower continuous) lines. The dashed lines correspond to
no account of the delta-vicinity. The continuous lines show Eq. (96) containing the
contribution of the delta-vicinity.
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the coordinate-space delta-vicinity appearing in the kinetic regime1

gives a relatively large change in the dispersion dependence.
This large value of the vicinity volume appearing in the kinetic

regime happens due to requirement of the smoothness (or the continu-
ously differentiable) of the distribution function. If we keep the
number density as the continuously differentiable function at a discon-
tinuous distribution function, then we have the hydrodynamic regime
with the smaller delta-vicinity. Therefore, it decreases the contribution
of the delta-vicinity in the dispersion dependence of the Langmuir
waves. Let us to give a reestimation of the volume of the delta-vicinity.
First, we repeat our previous arguments. We consider

ffiffiffiffiffiffiffiffiffiffi
a=rD

p
as a

small parameter � ¼ ffiffiffiffiffiffiffiffiffiffi
a=rD

p
. For the characteristic macroscopic dis-

tance rD, we have a small distance �rD ¼ ffiffiffiffiffiffiffi
arD

p
. It is used as the radius

of the delta-vicinity in the hydrodynamics
ffiffiffiffi
D3

p
hydr ¼ �rD ¼ ffiffiffiffiffiffiffi

arD
p

.
Next, we increase the scale to get the continuous distribution function
in the kinetic regime

ffiffiffiffi
D3

p
kin ¼ rD. On the other hand, we can consider

a scale that has an intermediate value between a and
ffiffiffiffiffiffiffi
arD

p
. It is the

geometric mean of these scales
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a
ffiffiffiffiffiffiffi
arD

pp ¼ ffiffiffiffiffiffiffiffiffi
a3rD

4
p

. It can be inter-
preted as another radius of the delta-vicinity in the hydrodynamicsffiffiffiffieD3
p

hydr ¼
ffiffiffiffiffiffiffiffiffi
a3rD

4
p

. The corresponding reestimation of the delta-

vicinity radius for the kinetic regime gives
ffiffiffiffieD3

p
kin ¼ ffiffiffiffiffiffiffi

arD
p

. It provides
the decrease in difference in the continuous and dashed lines in Figs. 3
and 4.

B. SEAWs under influence of the dipolar distribution
function evolution

Let us point out that the SEAW is the additional wave solution
appearing in the electron gas in addition to the Langmuir wave. It can
exist in the partially spin-polarized electron gas. However, it does not
exist in the electron gas with the zero spin polarization. Relativistic
SEAWs considered in terms of the Vlasov equation with no account of
the delta-vicinity are studied in Ref. 41. Here, we point out some fea-
tures related to the delta-vicinity and the evolution of functions
dðr; p; tÞ and eFðr; p; tÞ.

The SEAWs correspond to the intermediate frequency interval
kzvFd 
 x 
 kzvFu 


ffiffiffiffiffi
Dv

3
p

kz . Therefore, we need to consider the
opposite regime of expansion of ln functions in Eq. (94) for the spin-
down electrons:

ln
x2 � ðkzvFs �

ffiffiffiffiffi
Dv

3
p

kzÞ2
x2 � ðkzvFs þ

ffiffiffiffiffi
Dv

3
p

kzÞ2
 !

� 2
x

kzvFs
�

ffiffiffiffiffi
Dv

3
p

kz
kzvFs

 !
and

ln
ðx� kzvFsÞ2 �

ffiffiffiffiffiffi
D2
v

3

q
k2z

ðxþ kzvFsÞ2 �
ffiffiffiffiffiffi
D2
v

3

q
k2z

0B@
1CA � �4

x
kzvFs

:

Let us also remind the expansion existing for the logarithm in the last
term

ln
x� kzvFs
xþ kzvFs

� �
� �2

x
kzvFs

:

We need to use these expansions for the spin-down electrons.
However, we use expansions given in Sec. XIA for the spin-up

electrons. We substitute it in the dispersion equation (94) in order to
obtain the simplified expression for the dispersion equation for the
SEAWs,

kz ¼ 3
2
x2

Ld

cFd

1
v2Fdkz

�2� x
kzvFd

ffiffiffiffiffi
Dv

3
p
vFd

þ
ffiffiffiffiffiffi
D2
v

3

q
v2Fd

þ x2

k2zv
2
Fd

þ 3
ffiffiffiffiffiffi
D23

p
k2z

0@ 1A
þ x2

Lu

cFu

kz
x2

1� 3
2

ffiffiffiffiffiffi
D23

p
k2z þ

3
5
k2zv

2
Fu

x2

� �
: (97)

First, we need to consider the zeroth approximation on the small
parameters

1þ 3
x2

Ld

cFd

1
v2Fdk

2
z

¼ x2
Lu

cFux2
: (98)

In the long-wavelength limit, we can also drop the first term on the
left-hand side

x2 ¼ 1
3
cFdx

2
Lu

cFux
2
Ld

v2Fdk
2
z : (99)

Next, we consider corrections to solution (98). We include corrections
on the wave vector appearing from Eq. (98). We also include correc-
tions appearing from the higher order of expansions on the well-
known small parameters demonstrated in Eq. (97). Finally, we include
corrections related to the evolution of the vector distribution functions
[they are also demonstrated in Eq. (97)]. We obtain this solution from
Eq. (97) by the iteration method, meaning we place solution (99)
instead of x in the small terms in Eq. (97). Hence, we find

x2 ¼ 1
3
cFdx

2
Lu

cFux
2
Ld

v2Fdk
2
z 1� 1

3
cFdv

2
Fdk

2
z

x2
Ld

� 3
ffiffiffiffiffiffi
D23

p
k2z þ

9
5
cFdx

2
Lu

cFux
2
Ld

v2Fu
v2Fd

 

� 1
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cFdx

2
Lu

cFux
2
Ld

� 1

2
ffiffiffi
3

p cFdxLu

cFuxLd

ffiffiffiffiffi
Dv

3
p
vFd

� 1
2

ffiffiffiffiffiffi
D2
v

3

q
v2Fd

1A: (100)

Here, we see two kinds of corrections: one of them depends on
the wave vector kz, and the other does not depend on the wave vector
kz. Both kinds are composed of the well-known terms, which are
related to the dynamics of the scalar distribution function, and novel
terms, which are caused by the vector distribution functions.

Let us consider these corrections in more detail. Four terms
(from the second term to the fifth term) on the right-hand side do not
depend on the wave vector. Two of them are well-known terms (the
second and third terms). They have different signs, but obviously the
negative term is larger v2Fd 
 v2Fu. Two novel terms are negative; hence,
novel terms increase the contribution of the well-known terms. Next
we consider two last terms in Eq. (100). They depend on kz and have
negative signs. Therefore, the contribution of the vector distribution
functions via the coefficient

ffiffiffiffiffiffi
D23

p
strengthens the decrease in the group

velocity. The last conclusion happens in contrast with the result
obtained for the Langmuir wave, where the term proportional to

ffiffiffiffiffiffi
D23

p
decreased the group velocity and gave the competition to the Fermi
pressure.

In Eq. (100), we have three terms containing the delta-vicinity.
Two last terms explicitly contain the small parameter

ffiffiffiffiffi
Dv

3
p � �vFe.

The third term 3
ffiffiffiffiffiffi
D23

p
k2z is more sensitive to the estimations of the
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coordinate part of the delta-vicinity
ffiffiffiffi
D3

p
. However, this term is propor-

tional to the wave vector k. Equation (100) is obtained in the long-
wavelength limit. Hence, we consider small wave vectors k and this
term is relatively small in comparison with the first term.

XII. CONCLUSION

The detailed derivation of kinetic equations for the relativistic plas-
mas has been presented. It concludes in the set of three kinetic equations
(for each species of particles): the Vlasov kinetic equation for the scalar
distribution function, the equation of evolution of the vector distribution
function of the electric dipole moment (the fluctuation of local center of
mass of the particles being in the physically infinitesimal volume), and
the equation of evolution of the vector distribution function of the veloc-
ity (the fluctuation of average momentum of the particles being in the
physically infinitesimal volume). This closed set of equations appears as
the result of truncation of the quasi-infinite set of kinetic equations
(number of degrees of freedom is restricted due to the finite number of
particles N), which extends via the account of two-, three-, and more
coordinate distribution functions and higher multipole moments of one-
coordinate (along with two-, three-, and more coordinate) distribution
functions. The developed truncation method represents the one-
coordinate tensor distribution functions via the one-coordinate scalar
and vector distribution functions. The radius of the physically infinitesi-
mal volume explicitly enters the coefficients appearing in this representa-
tion. This methodology based on the small value of the physically
infinitesimal volume in comparison with the macroscopic scales. This
truncation appears in addition to the splitting of the two-coordinate dis-
tribution function, which is usually part of the transition to the mean-
field approximations. All described steps have been made within the
kinetic theory in terms of the distribution functions. So, no transition to
hydrodynamics or no calculations of moments of the distribution func-
tions have been made.

The derivation method shows the representation of the micro-
scopic motion of the individual particles in terms of the macroscopic
distribution functions. It gives the representation of the deterministic
classical mechanics in terms of the evolution of the collective functions.
No probabilistic approaches are used for the derivation or interpreta-
tion of presented equations and found functions.

Equations have been found for the relativistic plasmas meaning
both the large temperatures of the system (large velocities of the cha-
otic motion) and the large velocities of the ordered motion. The
motion of particles with the velocities close to the speed of light
requires the account of full retarding potentials for the electromagnetic
field created by particles. It reflects in the full Maxwell equations
obtained in the self-consistent field approximation. The Maxwell equa-
tions also include the distribution function of the electric dipole
moment, distribution function of the velocity, etc., as the sources of the
electromagnetic field.

The model is found for the hot plasmas, but it can be used for the
degenerate electron gas with the Fermi velocity close to the speed of
light. Hence, it is applied to the spin-electron acoustic waves in the
extremely dense plasmas. The dispersion dependence of the Langmuir
waves has been found under the influence of the vector distribution
functions. Hence, the effect of scale corresponding to the transition to
the macroscopic level of description reveals in the characteristics of
waves. It gives an additional term containing the radius of the coordi-
nate part of the physically infinitesimal volume. This effect gives a
decrease in the group velocity of the Langmuir waves. Hence, it allows

to check the chosen method of truncation together with the possible
values of the physically infinitesimal volume. The influence of the vec-
tor distribution functions on the spin-electron acoustic waves has been
considered as well. The spin-electron acoustic waves, in contrast to the
Langmuir waves, depend on the radiuses of coordinate and momen-
tum parts of the physically infinitesimal volume. However, the depen-
dence on the momentum part of the physically infinitesimal volume is
relatively small. Further estimations of the physically infinitesimal vol-
ume can require the consideration of the dispersion dependencies of
other waves existing in the plasmas both in the relativistic and nonrela-
tivistic regimes.

Here, the waves have been considered as the perturbations of the
equilibrium state with the zero values of the vector distribution func-
tions. It corresponds to the realistic equilibrium conditions. However,
nowadays, there are studies of plasmas that have not reached the equi-
librium state. They are usually described by the non-Maxwellian
electron distribution functions. However, the plasmas can exist in
such condition for a relatively long time. Hence, this state can be con-
sidered as an effective equilibrium. Some of these regimes can lead to
nonzero value of quasi-equilibrium values of the vector distribution
functions. It can provide more effective application of suggested kinetic
model.
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APPENDIX A: POTENTIALS OF THE ELECTROMAGNETIC
FIELD IN THEMULTIPOLE APPROXIMATION

The application of the full retarding potentials for the descrip-
tion of the field created by particles (7) and (8) reveals in the full set
of Maxwell equations found in the self-consistent field approxima-
tion (48)–(50). However, first it appears (in the self-consistent field
approximation) in the kinetic equation as the integral terms and
simplifies after the splitting of the two-coordinate distribution func-
tions on the products of the corresponding one-coordinate distribu-
tion functions. These integral terms are shown in the text, but we
want to specify the structure of the scalar and vector potentials of
the electromagnetic field caused by different distribution functions
since the Maxwell equations (48)–(50) show the combined contri-
bution of all terms.

Therefore, the partial scalar potentials are

u0 ¼
ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þf ðr0; p0; t0Þ; (A1)

uD ¼ �@c
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þdcðr0; p0; t0Þ; (A2)
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and

uQ ¼ 1
2
@c
r@

b
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þqbcðr0; p0; t0Þ: (A3)

The partial vector potentials are

Aa
0 ¼

1
c

ð
dr0dp0

ð
dt0Gðt; t0; r; r0Þjaðr0; p0; t0Þ; (A4)

Aa
D ¼ � 1

c
@b
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0ÞJabD ðr0; p0; t0Þ; (A5)

and

Aa
Q ¼ 1

2
1
c
@c
r@

b
r

ð
dr0dp0

ð
dt0Gðt; t0; r; r0ÞJabcQ ðr0; p0; t0Þ: (A6)

These potentials correspond to the Maxwell equations presented in
the text (48)–(50).

APPENDIX B: CORRELATIONLESS LIMIT
OF TWO-COORDINATE DISTRIBUTION FUNCTIONS

1. Functions for Eq. (44)

The following notations for the two-coordinate distribution
functions are used in Eq. (44):

hhvai ðtÞii ! jas ðr; p; tÞ � fs0 ðr0; p0; t0Þ; (B1)

hhvaj ðt0Þii ! fsðr; p; tÞ � jas0 ðr0; p0; t0Þ; (B2)

hhnbvai ðtÞii ! JabD;sðr; p; tÞ � fs0 ðr0; p0; t0Þ; (B3)

hhnbvaj ðt0Þii ! dbs ðr; p; tÞ � jas0 ðr0; p0; t0Þ; (B4)

hhn0bvaj ðt0Þii ! fsðr; p; tÞ � JabD;s0 ðr0; p0; t0Þ; (B5)

hhnbncvaj ðt0Þii ! qbcs ðr; p; tÞ � jas0 ðr0; p0; t0Þ; (B6)

hhn0bn0cvaj ðt0Þii ! fsðr; p; tÞ � JabcQ;s0 ðr0; p0; t0Þ; (B7)

and

hhnbn0cvaj ðt0Þii ! dbs ðr; p; tÞ � JacD;s0 ðr0; p0; t0Þ: (B8)

2. Functions for Eq. (46)

The following notations for the two-coordinate distribution
functions are used in Eq. (46):

hhvbi ðtÞvgj ðt0Þii ! jbðr; p; tÞ � jgðr0; p0; t0Þ; (B9)

hhnavbi ðtÞvgj ðt0Þii ! JbaD ðr; p; tÞ � jgðr0; p0; t0Þ; (B10)

hhn0avbi ðtÞvgj ðt0Þii ! jbðr; p; tÞ � JgaD ðr0; p0; t0Þ; (B11)

hhnsnlvbi ðtÞvgj ðt0Þii ! JbslQ ðr; p; tÞ � jgðr0; p0; t0Þ; (B12)

hhn0sn0lvbi ðtÞvgj ðt0Þii ! jbðr; p; tÞ � JgslQ ðr0; p0; t0Þ; (B13)

and

hhnsn0lvbi ðtÞvgj ðt0Þii ! JbsD ðr; p; tÞ � JglD ðr0; p0; t0Þ: (B14)

3. Functions for Eq. (62)

The following notations for the two-coordinate distribution
functions are used in Eq. (62):

hhvai ðtÞiiðr; r0; p; p0; t; t0Þ ¼ jaðr; p; tÞ � f ðr0; p0; t0Þ; (B15)

hhncvai ðtÞii ¼ JacD ðr; p; tÞ � f ðr0; p0; t0Þ; (B16)

hhn0cvai ðtÞii ¼ jaðr; p; tÞ � dcðr0; p0; t0Þ; (B17)

hhvai ðtÞvbj ðt0Þii ¼ jaðr; p; tÞ � jbðr0; p0; t0Þ; (B18)

hhvai ðtÞvci ðtÞvgj ðt0Þii ¼ hvai ðtÞvci ðtÞi � jgðr0; p0; t0Þ; (B19)

and

hhvai ðtÞvci ðtÞvgj ðt0Þnhii ¼ hvai ðtÞvci ðtÞnhi � jgðr0; p0; t0Þ: (B20)
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