Analysis and design of indirect-drive National Ignition Facility double-shell targets with hohlraum temperatures of 200 eV and 250 eV are presented. The analysis of these targets includes the assessment of two-dimensional radiation asymmetry and nonlinear mix. Two-dimensional integrated hohlraum simulations indicate that the x-ray illumination can be adjusted to provide adequate symmetry control in hohlraums specially designed to have high laser-coupling efficiency [Suter et al., Phys. Plasmas 7, 2092 (2000)]. These simulations also reveal the need to diagnose and control localized 10–15 keV x-ray emission from the high-Z hohlraum wall because of strong absorption by the high-Z inner shell. Preliminary estimates of the degree of laser backscatter from an assortment of laser–plasma interactions suggest comparatively benign hohlraum conditions. The application of a variety of nonlinear mix models and phenomenological tools, including buoyancy-drag models, multimode simulations and fall-line optimization, indicates a possibility of achieving ignition, i.e., fusion yields greater than 1 MJ. Planned experiments on the Omega laser will test current understanding of high-energy radiation flux asymmetry and mix-induced yield degradation in double-shell targets.

1.
J. A.
Paisner
,
J. D.
Boyes
,
S. A.
Kumpan
,
W. H.
Lowdermilk
, and
M. S.
Sorem
,
Laser Focus World
30
,
75
(
1994
).
2.
S. W.
Haan
,
S. M.
Pollaine
,
J. D.
Lindl
et al.,
Phys. Plasmas
2
,
2480
(
1995
).
3.
J. K.
Hoffer
and
L. R.
Foreman
,
Phys. Rev. Lett.
60
,
1310
(
1988
);
J.
Sanchez
and
W. H.
Giedt
,
Fusion Technol.
36
,
346
(
1999
).
4.
G. W.
Collins
,
D. N.
Bittner
,
E.
Monsler
,
S.
Letts
,
E. R.
Mapoles
, and
T. P.
Bernat
,
J. Vac. Sci. Technol. A
14
,
2897
(
1996
).
5.
J.
Sater
,
B.
Kozioziemski
,
G. W.
Collins
,
E. R.
Mapoles
, and
J.
Pipes
,
Fusion Technol.
36
,
229
(
1999
).
6.
J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998).
7.
D. H.
Munro
,
P. M.
Celliers
,
G. W.
Collins
,
D. M.
Gold
,
L. B.
DaSilva
,
S. W.
Haan
,
R. C.
Cauble
,
B. A.
Hammel
, and
W. W.
Hsing
,
Phys. Plasmas
8
,
2245
(
2001
).
8.
S. M.
Pollaine
,
D. K.
Bradley
,
O. L.
Landen
,
R. J.
Wallace
,
O. S.
Jones
,
P. A.
Amendt
,
L. J.
Suter
, and
R. E.
Turner
,
Phys. Plasmas
8
,
2357
(
2001
).
9.
L. J.
Suter
,
J.
Rothenberg
,
D.
Munro
,
B. Van
Wonterghem
, and
S.
Haan
,
Phys. Plasmas
7
,
2092
(
2000
).
10.
T. R.
Boehly
,
D. R.
Brown
,
R. S.
Craxton
et al.,
Opt. Commun.
133
,
495
(
1997
).
11.
S. A. Colgate and A. G. Petschek, “Minimum conditions for the ignition of fusion,” LA-UR-88-1268, 1988; copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
12.
R. G.
Watt
,
N. D.
Delamater
,
P. L.
Gobby
,
V. M.
Gomez
,
J. E.
Moore
,
G. D.
Pollak
,
W. S.
Varnum
, and
J. D.
Colvin
,
Bull. Am. Phys. Soc.
44
,
166
(
1999
).
13.
W. S.
Varnum
,
N. D.
Delamater
,
S. C.
Evans
et al.,
Phys. Rev. Lett.
81
,
5153
(
2000
).
14.
D. B.
Harris
and
W. S.
Varnum
,
Bull. Am. Phys. Soc.
41
,
1479
(
1996
).
15.
G. B.
Zimmerman
and
W. L.
Kruer
,
Comments Plasma Phys. Controlled Fusion
2
,
51
(
1975
).
16.
J. D.
Ramshaw
,
Phys. Rev. E
58
,
5834
(
1998
).
17.
G.
Dimonte
and
M.
Schneider
,
Phys. Rev. E
54
,
3740
(
1996
);
G.
Dimonte
,
Phys. Plasmas
6
,
2009
(
1999
).
18.
P.
Amendt
,
A. I.
Shestakov
,
O. L.
Landen
,
D. K.
Bradley
,
S. M.
Pollaine
,
L. J.
Suter
, and
R. E.
Turner
,
Phys. Plasmas
8
,
2908
(
2001
).
19.
L. V.
Powers
,
R. L.
Berger
,
R. L.
Kauffman
et al.,
Phys. Plasmas
2
,
2473
(
1995
).
20.
E. A. Williams (private communication, 2000).
21.
R. E.
Tipton
,
D. J.
Steinberg
, and
Y.
Tomita
,
Jpn. Soc. Mech. Eng. Int. J. Ser. II
35
,
67
(
1992
).
22.
D. L.
Youngs
,
Physica D
12
,
32
(
1984
).
23.
C. G.
Speziale
,
Annu. Rev. Fluid Mech.
23
,
107
(
1991
).
24.
J. D.
Ramshaw
,
Phys. Rev. E
61
,
5339
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.