The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,α,θk);s is the edge normalized toroidal flux, α is the field line variable, and θk is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong “quantum chaos.” The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit.

1.
J. Nührenberg, W. Lotz, and S. Gori, in Theory of Fusion Plasmas, edited by E. Sindoni, F. Troyon, and J. Vaclavik (Societa Italiana di Fisica, Bologna, 1994), p. 3.
2.
P. R.
Garabedian
,
Phys. Plasmas
3
,
2483
(
1996
).
3.
E. Noether, Invariante Variationsprobleme, Nachr. D. Koenig. Gesellsch. D. Wiss. Zu Goettingen, Math-phys. Klasse (1918), pp. 235–237.
4.
M. C. Zarnstorff, L. A. Berry, A. Brooks et al., “Physics of compact advanced stellarators,” Plasma Phys. Controlled Fusion (in press).
5.
W. A.
Cooper
,
D. B.
Singleton
, and
R. L.
Dewar
,
Phys. Plasmas
3
,
275
(
1996
).
6.
C.
Nührenberg
,
Phys. Plasmas
3
,
2401
(
1996
);
C.
Schwab
,
Phys. Fluids B
5
,
3195
(
1993
).
7.
W. A.
Cooper
,
Plasma Phys. Controlled Fusion
34
,
1011
(
1992
).
8.
R. L.
Dewar
and
A. H.
Glasser
,
Phys. Fluids
26
,
3038
(
1983
).
9.
P.
Cuthbert
and
R. L.
Dewar
,
Phys. Plasmas
7
,
2302
(
2000
).
10.
P.
Cuthbert
,
J. L. V.
Lewandowski
,
H. J.
Gardner
,
M.
Persson
,
D. B.
Singleton
,
R. L.
Dewar
,
N.
Nakajima
, and
W. A.
Cooper
,
Phys. Plasmas
5
,
2921
(
1998
).
11.
S. M.
Hamberger
,
B. D.
Blackwell
,
L. E.
Sharp
, and
D. B.
Shenton
,
Fusion Technol.
17
,
123
(
1990
).
12.
J.
Chen
,
N.
Nakajima
, and
M.
Okamoto
,
Phys. Plasmas
6
,
1562
(
1999
).
13.
A.
Iiyoshi
and
K.
Yamazaki
,
Phys. Plasmas
2
,
2349
(
1995
).
14.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
15.
C.
Beidler
,
G.
Greiger
,
F.
Herrnegger
et al.,
Fusion Technol.
17
,
148
(
1990
).
16.
D. T.
Anderson
,
A. F.
Almagri
,
F. S. B.
Anderson
,
P. H.
Probert
,
J. L.
Shohet
, and
J. N.
Talmadge
,
J. Plasma Fusion Res.
1
,
49
(
1998
).
17.
S. P.
Hirshman
and
O.
Betancourt
,
J. Comput. Phys.
96
,
99
(
1991
).
18.
See EPAPS Document No. E-PHPAEN-9-911205 for additional figures of λ(s,α,θk).
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
19.
O.
Yamagishi
,
Y.
Nakamura
, and
K.
Kondo
,
Phys. Plasmas
8
,
2750
(
2001
).
20.
R. L.
Dewar
and
P.
Cuthbert
,
Chin. Phys. Lett.
0256-307X
,
33
(
2000
).
21.
C.
Hegna
and
S.
Hudson
,
Phys. Rev. Lett.
87
,
035001
(
2001
).
22.
V. V.
Nemov
,
S. V.
Kasilov
,
W.
Kernbichler
, and
M. F.
Heyn
,
Phys. Plasmas
6
,
4622
(
1999
).
23.
R. L.
Dewar
,
P.
Cuthbert
, and
R.
Ball
,
Phys. Rev. Lett.
86
,
2321
(
2000
).
24.
M.
Kotschenreuther
,
W.
Dorland
,
M. A.
Beer
, and
B. W.
Hammett
,
Phys. Plasmas
2
,
2381
(
1995
).
25.
G.
Rewoldt
,
L.-P.
Ku
,
W. M.
Tang
, and
W. A.
Cooper
,
Phys. Plasmas
6
,
4705
(
1999
).
26.
G.
Rewoldt
,
L.-P.
Ku
,
W. M.
Tang
et al.,
Phys. Plasmas
7
,
4942
(
2000
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.