Equilibrium, stability, and transport in stellarators can be studied theoretically by running large computer codes. Some of the codes have excellent resolution, and experimental data have been used to validate the results of numerical calculations. An analysis has been made of recent measurements from the Large Helical Device experiment in Japan to see how they compare with the theory [A. Komori, H. Yamada, O. Kaneko et al., Plasma Phys. Control. Fusion 42, 1165 (2000)]. Observations of confinement time at low collisionality like that in a reactor agree well with estimates using a quasineutrality algorithm to determine the electric potential. A nonlinear magnetohydrodynamic calculation of stability for various pressure profiles gives predictions of the beta limit that are consistent with the observations. Correlation of the theory with measurements justifies using the codes as a tool to design quasisymmetric configurations for a modular stellarator experiment promising better performance at reactor conditions.

1.
F. Bauer, O. Betancourt, P. Garabedian, and M. Wakatani, The Beta Equilibrium, Stability and Transport Codes (Academic, Boston, 1987).
2.
M.
Taylor
,
J. Comput. Phys.
110
,
407
(
1994
).
3.
P.
Garabedian
and
M.
Taylor
,
Nucl. Fusion
32
,
265
(
1992
).
4.
C.
Alejaldre
,
Phys. World
9
,
25
(
1996
).
5.
S.
Okamura
,
K.
Matsuoka
,
K.
Nishimura
et al.,
Nucl. Fusion
35
,
283
(
1995
).
6.
F. Bauer, O. Betancourt, and P. Garabedian, A Computational Method in Plasma Physics (Springer-Verlag, New York, 1978).
7.
F. Bauer, O. Betancourt, and P. Garabedian, Magnetohydrodynamic Equilibrium and Stability of Stellarators (Springer-Verlag, New York, 1984).
8.
S.
Hirshman
and
O.
Betancourt
,
J. Comput. Phys.
96
,
99
(
1991
).
9.
O.
Betancourt
,
Commun. Pure Appl. Math.
41
,
551
(
1988
).
10.
E.
Hameiri
,
Commun. Pure Appl. Math.
38
,
43
(
1985
).
11.
S.
Okamura
,
K.
Matsuoka
,
R.
Akiyama
et al.,
Nucl. Fusion
39
,
1337
(
1999
).
12.
O. Motojima, private communication (March, 2001).
13.
N. Ohyabu, private communication (March, 2001).
14.
J.
Nuehrenberg
and
R.
Zille
,
Phys. Lett. A
129
,
113
(
1988
).
15.
P.
Merkel
,
Nucl. Fusion
27
,
867
(
1987
).
16.
J. Lyon, J. Rome, P. Garabedian, and D. Anderson, in Proceedings of the 15th International Conference on Plasma Phys. and Controlled Nucl. Fusion Research, Seville, 1994 (International Atomic Energy Agency, Vienna, 1995), Vol. 2, p. 655.
17.
D.
Anderson
and
P.
Garabedian
,
Nucl. Fusion
34
,
881
(
1994
).
18.
P.
Garabedian
and
L.
Ku
,
Phys. Plasmas
6
,
645
(
1999
).
19.
P.
Garabedian
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
972
(
2000
).
20.
W.
Cooper
,
Phys. Plasmas
7
,
2546
(
2000
).
21.
S.
Hirshman
,
D.
Spong
,
J.
Whitson
et al.,
Phys. Plasmas
6
,
1858
(
1999
).
22.
P.
Garabedian
and
H.
Gardner
,
Phys. Plasmas
2
,
2020
(
1995
).
23.
K. Nishikawa and M. Wakatani, Plasma Physics (Springer-Verlag, Berlin, 1990).
24.
A.
Boozer
and
G.
Kuo-Petravic
,
Phys. Fluids
24
,
851
(
1981
).
25.
N.
Kuhl
,
J. Comput. Phys.
129
,
170
(
1996
).
26.
A.
Komori
,
H.
Yamada
,
O.
Kaneko
et al.,
Plasma Phys. Controlled Fusion
42
,
1165
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.