In this paper dispersion laws for electrostatic and electromagnetic waves in a homogeneous and unmagnetized relativistic Vlasov plasma are derived. From the dispersion laws the relativistic plasma frequency, which is temperature dependent is derived. Using the standard technique of successive approximations, simple but powerful approximate relativistic dispersion laws are derived, resembling the electromagnetic dispersion law and the electrostatic Bohm–Gross dispersion law in the nonrelativistic case. The relation between the relativistic plasma frequency ωpe, Debye wave number kD and the thermal velocity vth,e is established. The approximate dispersion laws are compared with numerical solutions of the full dispersion laws. The full dispersion equations are transformed so that they are well suited for numerical evaluation in the temperature range where a fully relativistic treatment is needed.

1.
P. C. Clemmow and J. P. Dougherty, Electrodynamics of Particles and Plasmas, Addison-Wesley Series in Advanced Physics (Addison-Wesley, Reading, MA, 1969).
2.
J. D.
Jackson
,
J. Nucl. Energy, Part C
1
,
171
(
1960
).
3.
B. D.
Fried
and
R. W.
Gould
,
Phys. Fluids
4
,
139
(
1961
).
4.
F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984), Vol. 1.
5.
R.
Schlickeiser
,
Phys. Scr.
T75
,
33
(
1998
).
6.
D. B.
Melrose
,
J. Plasma Phys.
62
,
249
(
1999
).
7.
K. Nishikawa and M. Wakatani, Plasma Physics: Basic Theory with Fusion Applications (Springer-Verlag, Berlin, Heidelberg, 2000).
8.
J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, DC, 1994), NRL/PU/6790-94-265.
9.
S. R. de Groot, W. A. van Leeuwen, and C. G. Weert, Relativistic Kinetic Theory, Principles and Applications (North-Holland, Amsterdam, 1980).
10.
J. Bergman, Doctoral thesis, Department of Astronomy and Space Physics, Uppsala University, Uppsala, Sweden, 2000.
11.
Handbook of Mathematical Functions, 9th ed., edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1964).
12.
L.
Landau
,
J. Phys. (Moscow)
10
,
25
(
1946
).
13.
B. D. Fried and S. D. Conte, The Plasma Dispersion Function, the Hilbert Transform of a Gaussian (Academic, New York, London, 1961).
14.
V. P.
Silin
,
Sov. Phys. JETP
11
,
1136
(
1960
).
15.
A. P. Prudnikov, Y. A. Brychkov, and O. Mariechev, Integrals and Series, Vol. 3: More Special Functions (Gordon and Breach, New York, 1990).
16.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series and Products, 4th ed. (Academic, New York, 1965).
17.
K. Roach, in Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC) 1997, Meijer G Function Representations (Association for Computing Machinery, New York, 1997).
18.
V. S. Adamchick and O. I. Mariechev, The Algorithm for Calculating Integrals of Hypergeometric Type Functions and its Realization in REDUCE System, ISAAC 90 (Addison-Wesley, New York, 1990).
19.
J. L.
Fields
,
Math. Comput.
26
,
757
(
1972
).
20.
A. P. Prudnikov, Y. A. Brychkov, and O. Mariechev, Integrals and Series, Vol. 1: Elementary Functions (Gordon and Breach, New York, 1990).
21.
A. P. Prudnikov, Y. A. Brychkov, and O. Mariechev, Integrals and Series, Vol. 2: Special Functions (Gordon and Breach, New York, 1990).
22.
A. P.
Prudnikov
,
Y. A.
Brychkov
, and
O.
Mariechev
,
J. Sov. Math.
54
,
1239
(
1991
).
23.
M. Brambilla, Kinetic Theory of Plasma Waves (Oxford University Press, New York, 1998).
24.
W. Baumjohann and R. A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 1996).
This content is only available via PDF.
You do not currently have access to this content.