The nonlinear dynamics of a typical dynamo mode in a reversed field pinch, under the action of the braking torque due to eddy currents excited in a resistive vacuum vessel and the locking torque due to a resonant error-field, is investigated. A simple set of phase evolution equations for the mode is derived: these equations represent an important extension of the well-known equations of Zohm et al. [Europhys. Lett. 11, 745 (1990)] which incorporate a self-consistent calculation of the radial extent of the region of the plasma which corotates with the mode; the width of this region being determined by plasma viscosity. Using these newly developed equations, a comprehensive theory of the influence of a resistive vacuum vessel on error-field locking and unlocking thresholds is developed. Under certain circumstances, a resistive vacuum vessel is found to strongly catalyze locked mode formation. Hopefully, the results obtained in this paper will allow experimentalists to achieve a full understanding of why the so-called “slinky mode” locks in some reversed field pinch devices, but not in others. The locking of the slinky mode is currently an issue of outstanding importance in reversed field pinch research.

1.
H. A. B.
Bodin
,
Nucl. Fusion
30
,
1717
(
1990
).
2.
J. B.
Taylor
,
Phys. Rev. Lett.
33
,
1139
(
1974
).
3.
B.
Alpher
,
M. K.
Bevir
,
H. A. B.
Bodin
et al.,
Plasma Phys. Controlled Fusion
31
,
205
(
1989
).
4.
S. Ortolani, and D. D. Schnack, Magnetohydrodynamics of Plasma Relaxation (World Scientific, Singapore, 1993).
5.
F.
Gnesotto
,
P.
Sonato
,
W. R.
Baker
et al.,
Fusion Eng. Des.
25
,
335
(
1995
).
6.
Y.
Yagi
,
S.
Sekine
,
H.
Sakakita
et al.,
Fusion Eng. Des.
45
,
409
(
1999
).
7.
J. S.
Sarff
,
N. E.
Lanier
,
S. C.
Prager
, and
M. R.
Stoneking
,
Phys. Rev. Lett.
78
,
62
(
1997
).
8.
T.
Tamano
,
W. D.
Bard
,
C.
Chu
et al.,
Phys. Rev. Lett.
59
,
1444
(
1987
).
9.
A. Buffa, F. Gnesotto, V. Antoni, et al., in Controlled Fusion and Plasma Physics, in Proceedings of the 21st European Conference, Montpellier, 1994 (European Physical Society, Petit-Lancy, 1994), Vol. I, p. 458.
10.
R.
Fitzpatrick
,
Phys. Plasmas
6
,
1168
(
1999
).
11.
T. Bolzonella, S. Ortolani, and J. S. Sarff, in Controlled Fusion and Plasma Physics, in Proceedings of the 25th European Conference, Prague, 1998 (European Physical Society, Petit-Lancy, 1998), p. 789.
12.
V. Antoni, L. Apolloni, M. Bagatin et al., in Plasma Physics and Controlled Nuclear Fusion 1994, in Proceedings of the 15th International Conference, Seville, 1994 (International Atomic Energy Agency, Vienna, 1995), Vol. 2, p. 405.
13.
Y.
Yagi
,
H.
Koguchi
,
H.
Sakakita
et al.,
Phys. Plasmas
6
,
3824
(
1999
).
14.
S. Martini, R. Piovan, P. Sonato et al., in Plasma Physics and Controlled Nuclear Fusion 1998, in Proceedings of the 17th International Conference, Yokohama, 1998 (International Atomic Energy Agency, Vienna, to be published).
15.
A. F.
Almagri
,
S.
Assadi
,
S. C.
Prager
et al.,
Phys. Fluids B
4
,
4080
(
1992
).
16.
D. J.
Den Hartog
,
A. F.
Almagri
,
J. T.
Chapman
et al.,
Phys. Plasmas
2
,
2281
(
1995
).
17.
A. K.
Hansen
,
A. F.
Almagri
,
D. J.
Den Hartog
,
S. C.
Prager
, and
J. S.
Sarff
,
Phys. Plasmas
5
,
2942
(
1998
).
18.
R.
Fitzpatrick
,
Phys. Plasmas
5
,
3325
(
1998
).
19.
R.
Fitzpatrick
,
S. C.
Guo
,
D. J.
Den Hartog
, and
C. C.
Hegna
,
Phys. Plasmas
6
,
3878
(
1999
).
20.
The standard large aspect-ratio ordering is R0/a≫1, where R0 and a are the major and minor radii of the plasma, respectively.
21.
The conventional definition of this parameter is β=2μ0〈p〉/〈B2〉, where 〈⋯〉 denotes a volume average, p is the plasma pressure, and B is the magnetic field-strength.
22.
W. A.
Newcomb
,
Ann. Phys. (N.Y.)
10
,
232
(
1960
).
23.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
24.
R.
Fitzpatrick
,
Nucl. Fusion
33
,
1049
(
1993
).
25.
A. F.
Almagri
,
J. T.
Chapman
,
C. S.
Chiang
et al.,
Phys. Plasmas
5
,
3982
(
1998
).
26.
A. I.
Smolyakov
,
A.
Hirose
,
E.
Lazzaro
,
G. B.
Re
, and
J. D.
Callen
,
Phys. Plasmas
2
,
1581
(
1995
).
27.
R. M.
Coelho
,
E.
Lazzaro
,
M. F.
Nave
, and
F.
Serra
,
Phys. Plasmas
6
,
1194
(
1999
).
28.
M. F. F.
Nave
and
J. A.
Wesson
,
Nucl. Fusion
30
,
2575
(
1990
).
29.
R. L.
La Haye
,
T. H.
Osborne
,
C. L.
Rettig
,
C. M.
Greenfield
,
A. W.
Hyatt
, and
J. T.
Scoville
,
Nucl. Fusion
8
,
988
(
1995
).
30.
L. L.
Lao
,
R. J.
La Haye
,
K. H.
Burrell
et al.,
Phys. Plasmas
5
,
1050
(
1998
).
31.
J. M.
Finn
and
C. R.
Sovinec
,
Phys. Plasmas
5
,
461
(
1998
).
32.
T. H.
Stix
,
Phys. Fluids
16
,
1260
(
1973
).
33.
A. H.
Boozer
,
Phys. Fluids
24
,
1387
(
1981
).
34.
T. H.
Jensen
and
M. S.
Chu
,
J. Plasma Phys.
30
,
57
(
1983
).
35.
P. H. Rutherford, in Basic Physical Processes of Toroidal Fusion Plasmas, in Proceedings of the Course and Workshop, Varrena, 1985 (Commission of the European Communities, Brussels, 1986), Vol. 2, p. 531.
36.
M.
Persson
and
A.
Bondeson
,
Nucl. Fusion
29
,
989
(
1989
).
37.
T. C.
Hender
,
C. G.
Gimblett
, and
D. C.
Robinson
,
Nucl. Fusion
29
,
1279
(
1989
).
38.
G.
Berge
,
L. K.
Sandal
, and
J. A.
Wesson
,
Phys. Scr.
40
,
173
(
1989
).
39.
D.
Edery
and
A.
Samain
,
Plasma Phys. Controlled Nucl. Fusion Res.
32
,
93
(
1990
).
40.
H.
Zohm
,
A.
Kallenbach
,
H.
Bruhns
,
G.
Fussmann
, and
O.
Klüber
,
Europhys. Lett.
11
,
745
(
1990
).
41.
T. H.
Jensen
,
A. W.
Leonard
,
R. J.
La Haye
, and
M. S.
Chu
,
Phys. Fluids B
3
,
1650
(
1991
).
42.
G.
Kurita
,
T.
Tuda
,
M.
Azumi
, and
T.
Takeda
,
Nucl. Fusion
11
,
1899
(
1992
).
43.
R. D. Parker, in Controlled Fusion and Plasma Physics, in Proceedings of the 19th European Conference, Innsbruck, 1992 (European Physical Society, Petit-Lancy, 1992), Vol. I, p. 427.
44.
R.
Fitzpatrick
,
Phys. Plasmas
5
,
3325
(
1998
).
45.
D. A.
Gates
and
T. C.
Hender
,
Nucl. Fusion
36
,
273
(
1996
).
46.
G. A.
Navratil
,
C.
Cates
,
M. E.
Mauel
et al.,
Phys. Plasmas
5
,
1855
(
1998
).
47.
W. A.
Craven
and
A. J.
Wootton
,
Nucl. Fusion
38
,
585
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.