The effect of kinetic processes on the saturation of parametric instabilities in an electromagnetically driven plasma is investigated. A reduced-description particle-in-cell technique is used as a benchmark to test a new quasilinear-Zakharov model which accounts for electron heating due to Landau damping by coupling the quasilinear diffusion equation to the Zakharov equations. The reduced-description particle-in-cell method utilizes a two-time-scale approximation which significantly reduces the numerical dissipation and ion noise levels. This approach allows accurate modeling of Langmuir and ion acoustic waves in regimes typically studied with Zakharov simulations. The comparison of the two models is performed for the test case of a one-dimensional homogeneous plasma driven by a spatially uniform pump in both the Langmuir decay instability cascade and collapse regimes. Good agreement is found in both weakly and strongly driven regimes for the total Langmuir wave energy and evolved electron velocity distributions. Electron heating significantly decreases saturation levels in strongly driven regimes by increasing the Landau damping rate, bringing the quasilinear-Zakharov simulations in much closer agreement with the reduced-description particle-in-cell simulations than standard Zakharov simulations, which do not account for the evolution of the electron distribution.

1.
C.
Labaune
,
H. A.
Baldis
,
B. S.
Bauer
,
V. T.
Tikhonchuk
, and
G.
Laval
,
Phys. Plasmas
5
,
234
(
1998
).
2.
K. L.
Baker
,
R. P.
Drake
,
B. S.
Bauer
et al.
Phys. Rev. Lett.
77
,
67
(
1996
).
3.
P. Y.
Cheung
,
A. Y.
Wong
,
T.
Tanikawa
,
J.
Santoru
,
D. F.
DuBois
,
H. A.
Rose
, and
D.
Russell
,
Phys. Rev. Lett.
62
,
2676
(
1989
).
4.
D. F.
DuBois
,
D. A.
Russell
, and
H. A.
Rose
,
Phys. Scr.
31
,
918
(
1996
).
5.
V. E.
Zakharov
,
Sov. Phys. JETP
35
,
908
(
1972
).
6.
D. F.
DuBois
,
D. A.
Russell
, and
H. A.
Rose
,
Phys. Plasmas
2
,
76
(
1995
).
7.
A.
Hanssen
,
E.
Mjolhus
,
D. F.
DuBois
, and
H. A.
Rose
,
J. Geophys. Res., [Space Phys.]
97
,
12073
(
1992
).
8.
J. G.
Wang
,
G. L.
Payne
,
D. F.
DuBois
, and
H. A.
Rose
,
Phys. Plasmas
1
,
2531
(
1994
).
9.
J. G.
Wang
,
G. L.
Payne
,
D. F.
DuBois
, and
H. A.
Rose
,
Phys. Plasmas
2
,
1129
(
1995
).
10.
D. W.
Forslund
,
J. M.
Kindel
, and
E. L.
Lindman
,
Phys. Fluids
18
,
1017
(
1975
).
11.
H. X.
Vu
,
B.
Bezzerides
, and
D. F.
DuBois
,
J. Comput. Phys.
156
,
12
(
1999
).
12.
K. Y.
Sanbonmatsu
,
H. X.
Vu
,
D. F.
DuBois
, and
B.
Bezzerides
,
Phys. Rev. Lett.
5
,
82
(
1999
).
13.
H. X. Vu, K. Y. Sanbonmatsu, B. Bezzerides, and D. F. DuBois, “Laying a foundation for laser-plasma interaction modeling for the National Ignition Facility,” to appear in Comput. Phys. Commun.
14.
V. E.
Zakharov
,
A. N.
Pushkarev
,
R. Z.
Sagdeev
,
G. I.
Solovev
,
V. D.
Shapiro
,
V. F.
Shvets
, and
V. I.
Shevchenko
,
Sov. Phys. Dokl.
34
,
248
(
1989
).
15.
J. J.
Thomson
,
R. J.
Faehl
, and
W. L.
Kruer
,
Phys. Rev. Lett.
31
,
918
(
1973
).
16.
K. Y. Sanbonmatsu, Ph.D. thesis, University of Colorado, Boulder, 1997.
17.
W. E.
Drummond
and
D.
Pines
,
Nucl. Fusion Suppl.
3
,
1049
(
1962
).
18.
A. A.
Vedenov
,
E. P.
Velikhov
, and
R. Z.
Sagdeev
,
Nucl. Fusion Suppl.
2
,
465
(
1962
).
19.
R. E.
Aamodt
and
W. E.
Drummond
,
Phys. Fluids
7
,
1816
(
1964
).
20.
K. Y.
Sanbonmatsu
,
I.
Doxas
,
M. V.
Goldman
, and
D. L.
Newman
,
Geophys. Res. Lett.
24
,
807
(
1997
).
21.
P. A.
Robinson
,
Phys. Fluids B
3
,
545
(
1990
).
22.
M.
Colunga
,
J. F.
Luciani
, and
P.
Mora
,
Phys. Fluids
29
,
3407
(
1986
).
23.
D. L.
Newman
,
M. V.
Goldman
,
R. E.
Ergun
, and
M. H.
Boehm
,
J. Geophys. Res., [Space Phys.]
99
,
6377
(
1994
).
24.
B. B. Kadomtsev, Plasma Turbulence (Academic, London, 1965), p. 15.
25.
K. Y.
Sanbonmatsu
,
H. X.
Vu
,
B.
Bezzerides
, and
D. F.
DuBois
,
Phys. Plasmas
7
,
1723
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.