A fully kinetic code for ions [one dimensional (1-D) in space, and using the three velocity dimensions in velocity space] is used to study the problem of the formation of a charge separation with the self-consistent electric field in a plasma in the presence of a density gradient. Electrons are treated using an adiabatic law. Graphical results are presented which follow the formation of a 1-D steady state showing the formation of an oscillating positive potential bump toward the edge of the plasma. These oscillations are closely associated with the gyration of the ions. It is also shown that the presence of a small fraction of impurity ions at the plasma edge can have a significant effect on the rapid buildup of the potential at the edge, and in increasing the charge separation and the associated electric field at the edge, in comparison to the case when no impurity ions are included. The present results show the importance of a kinetic solution to the problem of the equilibrium electric field and charge separation in the presence of a density gradient, and point to the important role played by the finite ions’ gyroradius and the important contribution of impurity ions in this case.

1.
M.
Shoucri
,
E.
Pohn
,
G.
Knorr
,
P.
Bertrand
,
G.
Kamelander
,
G.
Manfredi
, and
A.
Ghizzo
,
Phys. Plasmas
6
,
1401
(
1999
).
2.
C.
Cheng
and
G.
Knorr
,
J. Comput. Phys.
22
,
330
(
1976
);
M.
Shoucri
and
R.
Gagné
,
J. Comput. Phys.
27
,
315
(
1978
).
3.
B.
Coppi
,
H. P.
Furth
,
M. N.
Rosenbluth
, and
R. Z.
Sagdeev
,
Phys. Rev. Lett.
17
,
377
(
1966
).
4.
B. Coppi, Proceedings of the 13th International Conference on Plasmas Physics and Controlled Fusion, Washington DC, 1990 (International Atomic Energy Agency, Vienna, 1990), Vol. 2, p. 413.
5.
See, for instance, the JET Team, paper presented by C. Gormezano, “High performance with modified shear in JET D-D and D-T plasmas,” Proceedings of the 17th International Conference on Plasmas Physics and Controlled Fusion, Japan, 1998 (International Atomic Energy Agency, Vienna, to be published);
R. Weynants, ibid. “Overview of RI-Mode results on Textor—94.”
6.
M. Shoucri, E. Pohn, P. Bertrand, G. Knorr, G. Kamelander, G. Manfredi, and A. Ghizzo, in Proceedings of the 26th EPS Conference on Controlled Fusion and Plasma Physics, Maastricht, 1999 (European Physical Society, Petit-Lancy, 1999).
7.
I.
Condrea
,
E.
Haddad
,
B.
Gregory
,
D.
Lafrance
,
J.-L.
Lachambre
,
G.
Pacher
,
F.
Meo
, and
H.
Mai
,
Rev. Sci. Instrum.
70
,
387
(
1999
).
8.
D. Pacella, B. Gregory, M. Leigheb, G. Pizzicaroli, G. Mazzitelli, M. Borra, L. Pieroni, M. May, K. Fournier, W. Goldstein, M. Finkental, M. Mattioli, and the FTU Team, in Proceedings of the 25th EPS Conference on Controlled Fusion and Plasma Physics, Prague, 1998 (European Physical Society, Petit-Lancy, 1998).
9.
R.
Bartiromo
,
Phys. Plasmas
5
,
3342
(
1998
).
10.
G.
Fussman
,
Contrib. Plasma Phys.
37
,
363
(
1997
);
P.
Helander
,
S.
Krasheninnikov
, and
P. J.
Cato
,
Phys. Plasmas
1
,
3174
(
1994
).
11.
P.
Monier-Garbet
,
K. H.
Burrell
,
F. L.
Hinton
,
J.
Kim
,
X.
Garbet
, and
R. J.
Groebner
,
Nucl. Fusion
37
,
403
(
1997
).
12.
M.
Romanelli
and
M.
Ottaviani
,
Plasma Phys. Controlled Fusion
40
,
1767
(
1998
).
13.
V.
Antoni
,
D.
Desideri
,
E.
Martines
,
G.
Serianni
, and
L.
Trancontin
,
Phys. Rev. Lett.
79
,
4814
(
1997
).
14.
A.
Fujisawa
,
H.
Iguchi
,
T.
Minami
et al.,
Phys. Rev. Lett.
82
,
2669
(
1999
).
15.
B.
Krane
,
I.
Christopher
,
M.
Shoucri
, and
G.
Knorr
,
Phys. Rev. Lett.
80
,
4422
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.