An analysis is presented of the dynamics of a helical magnetic island chain embedded in a toroidal plasma, in the presence of an externally imposed, rotating, magnetic perturbation of the same helicity. Calculations are carried out in the large aspect-ratio, zero-β, resistive magnetohydrodynamical limit, and incorporate a realistic treatment of plasma viscosity. There are three regimes of operation, depending on the modulation frequency (i.e., the difference in rotation frequency between the island chain and the external perturbation). For slowly modulated islands, the perturbed velocity profile extends across the whole plasma. For strongly modulated islands, the perturbed velocity profile is localized around the island chain, but remains much wider than the chain. Finally, for very strongly modulated islands, the perturbed velocity profile collapses to a boundary layer on the island separatrix, plus a residual profile which extends a few island widths beyond the separatrix. Analytic expressions are obtained for the perturbed velocity profile, the island equation of motion, and the island width evolution equation in each of these three regimes. The ion polarization correction to the island width evolution equation, which has previously been reported to be stabilizing, is found to be destabilizing in all three regimes.

1.
T.
Taylor
,
E. J.
Strait
,
L. L.
Lao
et al.,
Phys. Plasmas
2
,
2390
(
1995
).
2.
T.
Ivers
,
E.
Eisner
,
A.
Garafalo
et al.,
Phys. Plasmas
3
,
1926
(
1996
).
3.
O.
Sauter
,
R. J.
La Haye
,
Z.
Chang
et al.,
Phys. Plasmas
4
,
1654
(
1997
).
4.
J. S.
Sarff
,
N. E.
Lanier
,
S. C.
Prager
, and
M. R.
Stoneking
,
Phys. Rev. Lett.
78
,
62
(
1997
).
5.
M. N.
Rosenbluth
,
Plasma Phys. Controlled Fusion
41
,
A99
(
1999
).
6.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
7.
J. A.
Wesson
,
Nucl. Fusion
18
,
87
(
1978
).
8.
R.
Carrera
,
R. D.
Hazeltine
, and
M.
Kotschenreuther
,
Phys. Fluids
29
,
899
(
1986
).
9.
P. H.
Rutherford
,
Phys. Fluids
16
,
1903
(
1973
).
10.
R. B.
White
,
D. A.
Monticello
,
M. N.
Rosenbluth
, and
B. V.
Waddell
,
Phys. Fluids
20
,
800
(
1977
).
11.
A.
Thyagaraja
,
Phys. Fluids
24
,
1716
(
1981
).
12.
Z.
Chang
and
J. D.
Callen
,
Nucl. Fusion
30
,
219
(
1990
).
13.
B. V.
Chirikov
,
J. Nucl. Energy, Part C
1
,
253
(
1960
).
14.
M. N.
Rosenbluth
,
R. Z.
Sagdeev
,
J. B.
Taylor
, and
G. M.
Zaslavski
,
Nucl. Fusion
6
,
297
(
1966
).
15.
A. B.
Rechester
and
M. N.
Rosenbluth
,
Phys. Rev. Lett.
40
,
38
(
1978
).
16.
V. V. Arsenin, L. I. Artemenkov, N. V. Ivanov et al., in Proceedings of the 16th International Conference Innsbruck (IAEA, Vienna, 1979), Vol. I, p. 233.
17.
A. W.
Morris
,
T. C.
Hender
,
J.
Hugill
et al.,
Phys. Rev. Lett.
64
,
1254
(
1990
).
18.
G. A.
Navratil
,
C.
Cates
,
M. E.
Mauel
et al.,
Phys. Plasmas
5
,
1855
(
1998
).
19.
P. H. Rutherford, Proceedings of Course and Workshop on Basic Physical Processes of Toroidal Fusion Plasmas (Commission of the European Communities, Brussels, 1985), Vol. 2, p. 531.
20.
A. H.
Glasser
,
J. M.
Greene
, and
J. L.
Johnson
,
Phys. Fluids
18
,
875
(
1975
).
21.
M.
Kotschenreuther
,
R. D.
Hazeltine
, and
P. J.
Morrison
,
Phys. Fluids
28
,
294
(
1985
).
22.
G.
Ara
,
B.
Basu
,
B.
Coppi
,
G.
Laval
,
M. N.
Rosenbluth
, and
B. V.
Waddell
,
Ann. Phys. (N.Y.)
122
,
443
(
1978
).
23.
A. I.
Smolyakov
,
Plasma Phys. Controlled Fusion
35
,
657
(
1993
).
24.
M.
Zabiego
and
X.
Garbet
,
Phys. Plasmas
1
,
1890
(
1994
).
25.
R.
Fitzpatrick
and
T. C.
Hender
,
Phys. Fluids B
3
,
644
(
1991
).
26.
A. I.
Smolyakov
,
A.
Hirose
,
E.
Lazzaro
,
G. B.
Re
, and
J. D.
Callen
,
Phys. Plasmas
2
,
1581
(
1995
).
27.
H. R.
Wilson
,
J. W.
Connor
,
R. J.
Hastie
, and
C. C.
Hegna
,
Phys. Plasmas
3
,
248
(
1996
).
28.
F. L.
Waelbroeck
and
R.
Fitzpatrick
,
Phys. Rev. Lett.
78
,
1703
(
1997
).
29.
A. H.
Boozer
,
Phys. Plasmas
3
,
4620
(
1996
).
30.
E.
Lazzaro
and
M. F. F.
Nave
,
Phys. Fluids
31
,
1623
(
1988
).
31.
G.
Bosia
and
E.
Lazzaro
,
Nucl. Fusion
31
,
1003
(
1991
).
32.
The standard large aspect-ratio ordering is R0/a≫1, where R0 and a are the major and minor radii of the plasma, respectively.
33.
The conventional definition of this parameter is β=2μ0〈p〉/〈B2〉, where 〈⋯〉 denotes a volume average, p is the plasma pressure, and B is the magnetic field-strength.
34.
W. A.
Newcomb
,
Ann. Phys. (N.Y.)
10
,
232
(
1960
).
35.
R.
Fitzpatrick
,
Phys. Plasmas
6
,
1168
(
1999
).
36.
R.
Fitzpatrick
,
Nucl. Fusion
33
,
1049
(
1993
).
37.
R.
Fitzpatrick
,
S. C.
Guo
,
D. J.
Den Hartog
, and
C. C.
Hegna
,
Phys. Plasmas
6
,
3878
(
1999
).
38.
R.
Fitzpatrick
,
Phys. Plasmas
5
,
3325
(
1998
).
39.
T. H.
Stix
,
Phys. Fluids
16
,
1260
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.