Intense beams of heavy ions, envisaged for the near future at the Institute for Theoretical and Experimental Physics (Moscow) and Gesellschaft für Schwerionenforschung (Darmstadt), will be well suited for conducting implosion experiments in cylindrical geometry. In such implosions, the initial pressure generated by the direct beam heating can be enhanced by more than a factor of 10. If, in addition, an external magnetic field is introduced, the effect of magnetothermal insulation may allow to reach kilovolt temperatures and significant thermonuclear neutron yields in magnetized implosions driven by the beam heating intensities as low as ε̇≃1 TW/g. It is shown how the combined effect of the electrical resistivity and thermal conductivity sets a lower limit on the product UR(R is the radius, and U is the velocity of an imploding plasma volume) as a necessary condition for the regime of self-sustained magnetized implosion (SSMI). The optimal plasma parameters required for initiation of this regime are evaluated. In cylindrical geometry, the threshold for the SSMI regime is determined by the total driver energy deposition per unit areal density of the cylinder, ρ−1|dEb/dz| (kJ cm2/g). The results of one-dimensional magnetohydrodynamic simulations indicate that the advantages of magnetized implosions begin to manifest themselves at a beam energy level of Eb≈100 kJ.

1.
B.
Yu. Sharkov
,
D. G.
Koshkarev
,
M. D.
Churazov
,
N. N.
Alexeev
,
M. M.
Basko
,
A. A.
Golubev
, and
P. R.
Zenkevich
,
Nucl. Instrum. Methods Phys. Res. A
415
,
20
(
1998
).
2.
N.
Angert
,
Nucl. Instrum. Methods Phys. Res. A
415
,
236
(
1998
).
3.
I. Hofmann, “Heavy ion inertial fusion in Europe,” paper presented at the 13th International Symposium on Heavy Ion Inertial Fusion, 13–17 March, 2000, San Diego; to appear in the special issue Nucl. Instrum. Methods, Phys. Res. A.
4.
N. A.
Tahir
,
D. H. H.
Hoffmann
,
J. A.
Maruhn
,
K.-J.
Lutz
, and
R.
Bock
,
Phys. Plasmas
5
,
4426
(
1998
).
5.
N. A.
Tahir
,
D. H. H.
Hoffmann
,
A.
Kozyreva
,
A.
Shutov
,
J. A.
Maruhn
,
U.
Neuner
,
A.
Tauschwitz
,
P.
Spiller
, and
R.
Bock
,
Phys. Rev. E
61
,
1975
(
2000
).
6.
F. S.
Felber
,
M. A.
Liberman
, and
A. L.
Velikovich
,
Appl. Phys. Lett.
46
,
1042
(
1985
).
7.
F. S.
Felber
,
M. M.
Malley
,
F. J.
Wessel
,
M. K.
Matzen
,
M. A.
Palmer
,
R. B.
Spielman
,
M. A.
Liberman
, and
A. L.
Velikovich
,
Phys. Fluids
31
,
2053
(
1988
).
8.
M. A.
Liberman
and
A. L.
Velikovich
,
J. Plasma Phys.
31
,
381
(
1984
).
9.
R. C.
Kirkpatrick
,
I. R.
Lindemuth
, and
M. S.
Ward
,
Fusion Technol.
27
,
201
(
1995
).
10.
M. M.
Basko
,
Sov. J. Plasma Phys.
10
,
689
(
1984
).
11.
Ya. B. Zel’dovich and Yu. P. Raiser, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967), Vol. II, Chap. XII, Secs. 9,10.
12.
S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.
13.
M. M.
Basko
,
Nucl. Fusion
30
,
2443
(
1990
).
14.
M. A.
Liberman
and
A. L.
Velikovich
,
J. Plasma Phys.
31
,
369
(
1984
).
15.
H. J.
Kull
,
Phys. Rep.
206
,
199
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.