The current I to a cylindrical probe at rest in an unmagnetized plasma, with probe bias highly positive, is determined. The way I lags behind the orbital-motion-limited (OML) current, IOML∝R, as the radius R exceeds the maximum radius for the OML regime to hold, is of interest for space-tether applications. The ratio I/IOML is roughly a decreasing function of R/λDe−RmaxDe, which is independent of bias, with λDe the electron Debye length and RmaxDe roughly an increasing function of the temperature ratio, Ti/Te. The dependence of current on ion energy is used to discuss the effect of probe motion through the plasma, a case applying to tethers in low orbit.

1.
M.
Martı́nez-Sanchez
and
D. H.
Hastings
,
J. Astronaut. Sci.
35
,
75
(
1987
).
2.
R. D.
Estes
,
E.
Lorenzini
,
J. R.
Sanmartı́n
,
J.
Pelaez
,
M.
Martı́nez-Sanchez
,
L.
Johnson
, and
I.
Vas
,
J. Spacecr. Rockets
37
,
205
(
2000
).
3.
R. D.
Estes
,
J. Geophys. Res.
93
,
945
(
1988
);
J. R.
Sanmartı́n
and
M.
Martı́nez-Sanchez
,
J. Geophys. Res.
100
,
1677
(
1995
).
4.
J. R.
Sanmartı́n
and
R. D.
Estes
,
J. Geophys. Res.
102
,
14625
(
1997
).
5.
M.
Martı́nez-Sanchez
and
J. R.
Sanmartı́n
,
J. Geophys. Res.
102
,
27257
(
1997
).
6.
J. R.
Sanmartı́n
,
M.
Martı́nez-Sanchez
, and
E.
Ahedo
,
J. Propul. Power
9
,
353
(
1993
).
7.
R. D.
Estes
,
J. R.
Sanmartı́n
, and
M.
Martı́nez-Sanchez
,
J. Spacecr. Rockets
37
,
197
(
2000
).
8.
J. G.
Laframboise
and
L. W.
Parker
,
Phys. Fluids
16
,
629
(
1973
).
9.
J. R.
Sanmartı́n
and
R. D.
Estes
,
Phys. Plasmas
6
,
395
(
1999
).
10.
L. W.
Parker
and
E. C.
Whipple
, Jr.
,
Ann. Phys. (N.Y.)
44
,
126
(
1967
).
11.
Condition Eenv(r)=0 in (11b) corresponds to a minimum of r2Φ (the profile tangent at point 0, when reached from above, crosses the origin in Fig. 1). The quasineutral solution has no such property reaching 0 from below, and breaks down there; use of the full Eq. (2), however, would locally round the profile with no effect beyond the immediate neighborhood of 0, which just appears as the no energy-barrier point closest to 1.
12.
Results for Rmax from our analytical approach can be compared to numerical computations by Laframboise, who considered P/kTe of order unity or moderately large [National Technical Information Service Document No. 634596 (J. G. Laframboise, “Theory of spherical and cylindrical Langmuir probes in a collisionless, Maxwellian plasma at rest,” University of Toronto Institute for Aerospace Studies Report No. 100, 1966); copies may be ordered from the National Technical Information Service, Springfield, VA 22161]. Figures 42 and 50(b) in Laframboise’s work give Rmax≈0.96λDe at Te=Ti and the highest bias, P/kTe=25; Figs. 6 and 7 of Ref. 9 give Rmax≈0.77λDe, or about 20% too low, at the same conditions. Differences are greater at still lower bias, P/kTe=20 or 15.
13.
M. J. M.
Parrot
,
L. R. O.
Storey
,
L. W.
Parker
, and
J. G.
Laframboise
,
Phys. Fluids
25
,
2388
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.