A high-density helicon discharge (ne⩽1020m−3) produced through a new m=1 helical antenna is investigated. Various diagnostics are applied to measure the discharge parameters and the radio frequency (rf) quantities like the plasma resistance and the rf field distribution. Special attention is paid to the axial asymmetry of the discharge, which is characteristic for helicon devices with helical antennas. The axial profiles of the rf wave fields, as well as the energy deposition profiles, reveal that the rf power is mainly transferred and absorbed via the m=+1 helicon mode traveling in the positive magnetic-field direction. The experimental findings are compared with numerical results obtained from a fully electromagnetic model, which takes into account the rf current distribution of the launching antenna, as well as the finite size of the plasma column. The antenna–plasma coupling, as well as the total rf power deposited in the plasma, can be explained satisfactorily if the measured profiles are taken in the computations. In particular, the axial asymmetry of the helicon discharge can be understood in terms of the radial inhomogeneity of the plasma column. Furthermore, the calculations show that the small-scale Trivelpiece–Gould waves may be excited near the plasma edge. These waves would carry a considerable fraction of the absorbed rf power and may thus be important for the rf power coupling.

1.
R. W.
Boswell
,
Phys. Plasmas
26
,
1147
(
1984
).
2.
F. F.
Chen
,
Plasma Phys. Controlled Fusion
33
,
339
(
1991
).
3.
T. Shoji, IPPJ Annual Review, Nagoya University (1986), p. 67;
4.
T.
Watari
,
T.
Hatori
,
R.
Kumazawa
,
S.
Hidekuma
,
T.
Aoki
,
T.
Kawamoto
,
M.
Inutake
,
S.
Hiroe
,
A.
Nishizawa
,
K.
Adati
,
T.
Sato
,
T.
Watanabe
,
H.
Obayashi
, and
K.
Takayama
,
Phys. Fluids
21
,
2076
(
1978
).
5.
F. F.
Chen
,
I. D.
Sudit
, and
M.
Light
,
Plasma Sources Sci. Technol.
5
,
173
(
1996
).
6.
M.
Krämer
,
Phys. Plasmas
36
,
1052
(
1999
).
7.
K. P.
Shamrai
and
V. B.
Taranov
,
Plasma Phys. Controlled Fusion
36
,
1719
(
1994
).
8.
B.
Fischer
,
M.
Krämer
, and
Th.
Enk
,
Plasma Phys. Controlled Fusion
36
,
2003
(
1994
).
9.
P. K.
Loewenhardt
,
B. D.
Blackwell
,
R. W.
Boswell
,
G. D.
Conway
, and
S. M.
Hamberger
,
Phys. Rev. Lett.
67
,
2792
(
1991
).
10.
M. Krämer, B. Fischer, and Th. Enk, Proceedings of the 1994 International Conference on Plasma Physics, Iguacu (Brazil) (American Institute of Physics, New York, 1994), Vol. III, p. 37.
11.
Y.
Mouzouris
and
J. E.
Scharer
,
IEEE Trans. Plasma Sci.
24
,
152
(
1996
).
12.
S.
Cho
and
J.-G.
Kwak
,
Phys. Plasmas
4
,
4167
(
1997
).
13.
I. V.
Kamenski
and
G. G.
Borg
,
Comput. Phys. Commun.
113
,
10
(
1998
).
14.
I. V.
Kamenski
and
G. G.
Borg
,
Phys. Plasmas
3
,
4396
(
1996
).
15.
B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
16.
T. H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962), p. 45.
17.
M. Krämer and Th. Enk, Proceedings of the 23rd EPS Conference on Controlled Fusion and Plasma Physics, Kiev (European Physical Society, Petit-Lancy, 1996), Vol. III, p. 1319.
18.
Th. Enk, Ph.D. thesis, Ruhr-Universität Bochum (1999).
19.
R. K.
Fisher
and
R. W.
Gould
,
Phys. Fluids
14
,
857
(
1971
).
20.
D. A.
Schneider
,
G. G.
Borg
, and
I. V.
Kamenski
,
Phys. Plasmas
6
,
703
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.