When used in flowing electrostatically accelerated plasmas, electrostatic energy analyzers, such as Retarding Potential Analyzers (RPA’s) or Cylindrical Mirror Analyzers (CMA’s), occasionally yield data which seem implausible: for a known applied plasma acceleration voltage, electrostatic analyzers may indicate populations of ions having voltages much greater than that available through the electrostatic discharge. The process responsible for this phenomenon is resonant charge-exchange (CEX) collisions between ions of different charge species. Through the transfer of electrons, an ion of charge n+ can appear in an electrostatic analyzer with equivalent voltage of n-times the available acceleration potential. This paper discusses the phenomena responsible for the appearance of such high-voltage ions in the measured voltage distribution function and presents evidence for such reactions in the flowing xenon plasma produced by a Hall-effect current accelerator designed for spacecraft propulsion. For a 300 V applied potential on the Hall accelerator electrodes, CEX collisions are shown to produce ions having voltages as high as 800 V when measured using an electrostatic analyzer.

1.
S. Absalamov, V. Andreev, T. Colbert, M. Day, V. Egorov, R. Gnizdor, H. Kaurman, V. Kim, A. Korakin, K. Kozubsky, S. Kudravzev, U. Lebedev, G. Popov, and V. Zhurin, Measurement of Plasma Parameters in the Stationary Plasma Thruster (SPT-100) Plume and its Effect on Spacecraft Components, AIAA-92-3156, Proceedings of the 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Nashville, TN, 1992 (American Institute of Aeronautics and Astronautics, Washington DC, 1992).
2.
R. Myers and D. Manzella, Stationary Plasma Thruster Plume Characteristics, IEPC-93-096, Proceedings of the 23rd International Electric Propulsion Conference, Seattle, WA, 1993 (Electric Rocket Propulsion Society, Worthington, OH, 1993).
3.
L. B.
King
,
A. D.
Gallimore
, and
C. M.
Marrese
,
J. Propul. Power
14
(
3
),
327
335
(
1998
).
4.
H.
Kaufman
,
AIAA J.
23
(
1
),
78
87
(
1985
).
5.
V.
Zharinov
and
Y.
Popov
,
Sov. Phys. Tech. Phys.
12
,
208
211
(
1967
).
6.
A.
Bishaev
and
V.
Kim
,
Sov. Phys. Tech. Phys.
23
,
1055
1057
(
1978
).
7.
J. R. Brophy, J. W. Barnett, J. M. Sankovic, and D. A. Barnhart, Performance of the Stationary Plasma Thruster: SPT-100, Proceedings of 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Nashville, TN, 1992 (American Institute of Aeronautics and Astronautics, Washington DC, 1992).
8.
J. Sankovic, J. Hamley, and T. Haag, Performance Evaluation of the Russian SPT-100 Thruster at NASA LeRC, IEPC-93-094, Proceedings of 23rd International Electric Propulsion Conference, Seattle, WA, 1993 (Electric Rocket Propulsion Society, Worthington, OH, 1993).
9.
C. E. Garner, J. E. Polk, K. D. Goodfellow, and J. R. Brophy, Performance Evaluation and Life Testing of the SPT-100, IEPC-93-091, Proceedings of 23rd International Electric Propulsion Conference, Seattle, WA, 1993 (Electric Rocket Propulsion Society, Worthington, OH, 1993).
10.
L. B. King, “Transport-property and mass spectral measurements in the plasma exhaust plume of a Hall-effect space propulsion system,” Doctoral Dissertation, Dept. of Aerospace Engineering, University of Michigan, 1998.
11.
W.
deZeeuw
,
H.
van der Ven
,
J.
de Wit
, and
J.
Donne
,
Rev. Sci. Instrum.
62
(
1
),
110
117
(
1991
).
12.
A.
Gaus
,
W.
Htwe
,
T.
Brand
, and
M.
Schulz
,
Rev. Sci. Instrum.
65
(
12
),
3739
3745
(
1994
).
13.
V.
Esaulov
,
O.
Grizzi
,
L.
Guillemot
,
M.
Huels
,
S.
Lacombe
, and
Vu Ngoc
Tuan
,
Rev. Sci. Instrum.
67
(
1
),
135
144
(
1996
).
14.
D.
Rapp
and
W.
Francis
,
J. Chem. Phys.
37
(
11
),
2631
2645
(
1962
).
15.
T.
Kusakabe
,
T.
Horuchi
,
N.
Nagai
,
H.
Hanaki
,
I.
Konomi
, and
M.
Sakisaka
,
J. Phys. B
19
,
2165
2174
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.