This paper presents studies of the H+ minority ions driven by Ion Cyclotron Radio Frequency (ICRF) heating in the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Phys. Plasmas 5, 1577 (1998)] deuterium plasmas using primarily passive H° flux detection in the energy range of 0.2–1.0 MeV. The measured passive H+ energy spectra are compared with active (Li pellet charge exchange) results. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7–0.8 MeV. The sawtooth crashes displaces H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain where those ions are lost in ∼10 msec. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium (DT) alpha-particle redistribution due to sawtooth oscillations observed in TFTR. The experimental data are also consistent with numerical simulations of H+ stochastic ripple diffusion losses.

1.
M. G.
Bell
,
S.
Batha
,
M.
Beer
et al.,
Phys. Plasmas
4
,
1714
(
1997
).
2.
A. I.
Kislyakov
,
A. V.
Khudoleev
,
S. S.
Kozlovskij
, and
M. P.
Petrov
,
Fusion Eng. Des.
34–35
,
107
(
1997
).
3.
A.
Gibson
and the JET Team,
Phys. Plasmas
5
,
1839
(
1998
).
4.
M. P. Petrov, V. I. Afanassiev, S. Corti, A. Gondhalekar, A. V. Khudoleev, A. A. Korotkov, and A. C. Mass, in Proceedings of the 1992 International Conference on Plasma Physics, Innsbruck, 1992 (European Physical Society, Petit-Lancy, 1992), Vol. II, p. 1031.
5.
A. A.
Korotkov
,
A.
Gondhalekar
, and
A. J.
Stuart
,
Nucl. Fusion
37
,
35
(
1997
).
6.
V. I.
Afanassiev
,
Y.
Kusama
,
M.
Nemoto
et al.,
Plasma Phys. Controlled Fusion
39
,
1509
(
1997
).
7.
R. K.
Fisher
,
J. M.
McChesney
,
P. B.
Parks
et al.,
Phys. Rev. Lett.
75
,
846
(
1995
).
8.
S. S.
Medley
,
D. K.
Mansfield
,
A. L.
Roquemore
et al.,
Rev. Sci. Instrum.
67
,
3122
(
1996
).
9.
S. S.
Medley
,
M. P.
Petrov
,
A. L.
Roquemore
, and
R. K.
Fisher
,
Rev. Sci. Instrum.
70
,
841
(
1999
).
10.
J. E.
Bayfield
,
Phys. Rev.
185
,
105
(
1969
).
11.
Ya. I.
Kolesnichenko
and
Yu. V.
Yakovenko
,
Nucl. Fusion
36
,
159
(
1996
).
12.
F. B.
Marcus
,
J. M.
Adams
,
D. S.
Bond
et al.,
Nucl. Fusion
34
,
687
(
1994
).
13.
H. H.
Duong
and
W. W.
Heidbrink
,
Nucl. Fusion
33
,
211
(
1993
).
14.
M. P.
Petrov
,
R. V.
Budny
,
H. H.
Duong
et al.,
Nucl. Fusion
35
,
1437
(
1995
).
15.
M. P. Petrov, N. N. Gorelenkov, R. V. Budny et al., in Fusion Energy: Proceedings of the 16th International Fusion Energy Conference, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 261.
16.
S. S.
Medley
,
R. V.
Budny
,
H. H.
Duong
et al.,
Nucl. Fusion
38
,
1283
(
1998
).
17.
D. S.
Darrow
,
S. J.
Zweben
,
Z.
Chang
et al.,
Nucl. Fusion
37
,
939
(
1997
).
18.
K. L.
Wong
,
R.
Majeski
,
M.
Petrov
et al.,
Phys. Plasmas
4
,
393
(
1997
).
19.
R. L.
Boivin
,
S. J.
Zweben
, and
R. B.
White
,
Nucl. Fusion
33
,
449
(
1993
).
20.
N. N.
Gorelenkov
,
R. V.
Budny
,
H. H.
Duong
,
R. K.
Fisher
,
S. S.
Medley
,
M. P.
Petrov
, and
M. H.
Redi
,
Nucl. Fusion
37
,
1053
(
1997
).
21.
R. V.
Budny
,
M. G.
Bell
,
A. C.
Janos
et al.,
Nucl. Fusion
35
,
1497
(
1995
).
22.
B. B.
Kadomtsev
,
Sov. J. Plasma Phys.
1
,
389
(
1975
).
23.
R. B.
White
and
M. S.
Chance
,
Phys. Fluids
27
,
2455
(
1984
).
24.
R. B.
White
,
Phys. Fluids B
2
,
845
(
1990
).
25.
R. B.
White
,
R. J.
Goldston
,
M. H.
Redi
, and
R. V.
Budny
,
Phys. Plasmas
3
,
3043
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.