It has been observed experimentally in deuterium–tritium shots of the Tokamak Fusion Test Reactor (TFTR) [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] that crashes of sawtooth oscillations may result in very inhomogeneous flux of alpha particles to the wall. To explain this phenomenon, both theoretical analysis and numerical simulation have been carried out. It is concluded that the “crash-induced prompt loss,” i.e., the orbital loss of marginally trapped particles arising because of the crash-induced orbit transformation of circulating particles, is responsible for the flux near the bottom of the vessel, whereas the crash-induced stochastic diffusion of moderately trapped particles explains the large signal near the equatorial plane of the torus. The calculated poloidal distributions of the integral alpha flux are in reasonable agreement with experimental data. The energy spectrum of the escaping particles has also been calculated, which can be used for diagnostics of the crash type.

1.
F. B.
Marcus
,
J. M.
Adams
,
A. D.
Cheetham
et al.,
Plasma Phys. Controlled Fusion
33
,
277
(
1991
).
2.
M. P.
Petrov
,
R. V.
Budny
,
H. H.
Duong
et al.,
Nucl. Fusion
35
,
1437
(
1995
).
3.
O. N.
Jarvis
,
J. M.
Adams
,
P. J. A.
Howarth
et al.,
Nucl. Fusion
36
,
1513
(
1996
).
4.
B. C.
Stratton
,
R. J.
Fonck
,
G. R.
McKee
,
R. V.
Budny
,
Z.
Chang
,
F.
Wising
, and
A.
Ödblom
,
Nucl. Fusion
36
,
1586
(
1996
).
5.
Ya. I.
Kolesnichenko
and
Yu. V.
Yakovenko
,
Nucl. Fusion
32
,
449
(
1992
).
6.
Ya. I.
Kolesnichenko
and
Yu. V.
Yakovenko
, report at the IV International Atomic Energy Agency Technical Committee Meeting on Alpha Particles in Fusion Research, Princeton, April 1995, published in
Nucl. Fusion
36
,
159
(
1996
).
7.
Y.
Zhao
and
R. B.
White
,
Phys. Plasmas
4
,
1103
(
1997
).
8.
D. J.
Grove
and
D. M.
Meade
,
Nucl. Fusion
25
,
1167
(
1985
).
9.
S. J.
Zweben
,
D. S.
Darrow
,
H. W.
Herrmann
et al.,
Nucl. Fusion
35
,
893
(
1995
).
10.
S. J.
Zweben
,
D. S.
Darrow
,
S. H.
Batha
et al.,
Nucl. Fusion
38
,
739
(
1998
).
11.
M. P. Petrov, N. N. Gorelenkov, R. V. Budny et al., Fusion Energy 1996, Proceedings of the 16th International Atomic Energy Agency Conference, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 261.
12.
S. J. Zweben, R. Boivin, D. S. Darrow et al., Plasma Physics and Controlled Nuclear Fusion Research 1992, Proceedings of the 14th International Atomic Energy Agency Conference, Würzburg, 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 1, p. 363.
13.
Ya. I.
Kolesnichenko
,
V. V.
Lutsenko
,
Yu. V.
Yakovenko
, and
G.
Kamelander
,
Phys. Plasmas
4
,
2544
(
1997
).
14.
Ya. I.
Kolesnichenko
,
V. V.
Lutsenko
,
R. B.
White
, and
Yu. V.
Yakovenko
,
Phys. Plasmas
5
,
2963
(
1998
).
15.
L. E. Zakharov and V. D. Shafranov, in Problems of Plasma Theory (Consultants Bureau, New York, 1986), Vol. 11, p. 153.
16.
V. A. Yavorskij, J. W. Edenstrasser, V. Ya. Goloborod’ko, S. N. Reznik, and S. Zweben, Proceedings of the Fifth International Atomic Energy Agency Technical Committee Meeting on Alpha Particles in Fusion Research, Abingdon, 1997 (International Atomic Energy Agency, Vienna, 1997), p. 29.
17.
D.
Anderson
,
Ya. I.
Kolesnichenko
,
M.
Lisak
,
F.
Wising
, and
Yu. V.
Yakovenko
,
Nucl. Fusion
34
,
217
(
1994
).
18.
R. B.
White
and
M. S.
Chance
,
Phys. Fluids
27
,
2455
(
1984
).
19.
R. B.
White
,
Phys. Fluids B
2
,
845
(
1990
).
20.
S. J.
Zweben
,
Z.
Chang
,
D. S.
Darrow
et al., Report 1WepO1 5 at the 39th Annual Meeting of the Division of Plasma Physics of the American Physical Society, Pittsburgh, 1997, published in
Bull. Am. Phys. Soc.
42
,
1971
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.