Orientation phenomena for 1s→2p±1 transitions in electron–ion collisional excitations in a generalized Lorentzian (kappa) distribution plasma are investigated using the dynamic interaction potential. Scaled transition probabilities for 1s→2p±1 excitations are obtained using the plasma dielectric function. The semiclassical straight-line trajectory approximation is applied to the motion of the projectile electron in order to visualize the variation of the dynamic orientation parameter as a function of impact parameter, collision energy, and spectral index κ. When the electron thermal velocity is greater than the projectile velocity, the propensity of the m=−1 transition in the Lorentzian plasma is found to be smaller than that in the static model plasma. However, when the thermal velocity is smaller than the projectile velocity, the orientation parameters for various κ values are almost identical and the propensity of the m=−1 transition in Lorentzian plasma is stronger than that in the static model plasma. The propensity of the m=−1 transition decreases with increasing the projectile energy. For a large velocity ratio of the electron thermal velocity to the projectile velocity, the propensity of the m=−1 transition decreases with decreasing the spectral index κ.

1.
R. K. Janev, L. P. Presnyakov, and V. P. Shevelko, Physics of Highly Charged Ions (Springer-Verlag, Berlin, 1985), Chap. 7.
2.
J. C.
Weisheit
,
Adv. At. Mol. Phys.
25
,
101
(
1988
).
3.
Y.-D.
Jung
,
Phys. Plasmas
2
,
332
(
1995
).
4.
J. C. Weisheit, in Atomic, Molecular, and Optical Physics Handbook, edited by G. W. Drake (American Institute of Physics, Woodbury, NY, 1996), p. 978.
5.
H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997), Chap. 4.
6.
N.
Andersen
,
D.
Dowek
,
A.
Dubois
,
J. P.
Hansen
, and
S. E.
Nielsen
,
Phys. Scr.
42
,
266
(
1990
).
7.
Y.-D.
Jung
,
Phys. Plasmas
5
,
536
(
1998
).
8.
M.
Lamoureux
,
Adv. At. Mol. Phys.
31
,
233
(
1993
).
9.
M. Lamoureux, Atomic Processes in Plasmas, edited by W. L. Rowan (American Institute of Physics, Woodbury, NY, 1995), p. 173.
10.
D.
Summers
and
R. M.
Throne
,
Phys. Fluids B
3
,
1835
(
1991
).
11.
D. A.
Bryant
,
J. Plasma Phys.
56
,
87
(
1996
).
12.
Y.-D.
Jung
,
Astrophys. J.
409
,
841
(
1993
).
13.
Y.-D.
Jung
,
Phys. Fluids B
5
,
3432
(
1993
).
14.
Z.
Merg
,
R. M.
Thorne
, and
D.
Summers
,
J. Plasma Phys.
47
,
445
(
1992
).
15.
Y.-D.
Jung
,
Phys. Plasmas
4
,
21
(
1997
).
16.
M. Abramowitz and A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 360.
17.
W.
Hong
and
Y.-D.
Jung
,
Phys. Plasmas
3
,
2457
(
1996
).
18.
Y.-D.
Jung
and
I.-D.
Cho
,
Phys. Rev. E
52
,
5333
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.