Space plasma measurements, laboratory experiments, and simulations have shown that magnetohydrodynamic (MHD) turbulence exhibits a dynamical tendency towards spectral anisotropy given a sufficiently strong background magnetic field. Here the undriven decaying initial-value problem for homogeneous MHD turbulence is examined with the purpose of characterizing the variation of spectral anisotropy of the turbulent fluctuations with magnetic field strength. Numerical results for both incompressible and compressible MHD are presented. A simple model for the scaling of this spectral anisotropy as a function of the fluctuating magnetic field over total magnetic field is offered. The arguments are based on ideas from reduced MHD (RMHD) dynamics and resonant driving of certain non-RMHD modes. The results suggest physical bases for explaining variations of the anisotropy with compressibility, Reynolds numbers, and spectral width of the (isotropic) initial conditions.

1.
D.
Robinson
and
M.
Rusbridge
,
Phys. Fluids
14
,
2499
(
1971
).
2.
S.
Zweben
,
C.
Menyuk
, and
R.
Taylor
,
Phys. Rev. Lett.
42
,
1270
(
1979
).
3.
W. H.
Matthaeus
,
M. L.
Goldstein
, and
D. A.
Roberts
,
J. Geophys. Res.
95
,
20
673
(
1990
).
4.
V.
Carbone
,
F.
Malara
, and
P.
Veltri
,
J. Geophys. Res.
100
,
1763
(
1995
).
5.
H. R.
Strauss
,
Phys. Fluids
19
,
134
(
1976
).
6.
D. C.
Montgomery
,
Phys. Scr.
T2/1
,
83
(
1982
).
7.
G. P.
Zank
and
W. H.
Matthaeus
,
J. Plasma Phys.
48
,
85
(
1992
).
8.
Recall that the derivation (Ref. 6) of the Strauss equations explicitly excludes the presence of an initial O(1) population of Alfvén waves. However, if they exist, simulations (Refs. 11 and 17) show that evolution proceeds in such a way as to make the Stauss equations an increasingly valid approximation.
9.
G. P.
Zank
and
W. H.
Matthaeus
,
Phys. Fluids A
5
,
257
(
1993
).
10.
D. C.
Montgomery
and
L.
Turner
,
Phys. Fluids
24
,
825
(
1981
).
11.
J. V.
Shebalin
,
W. H.
Matthaeus
, and
D.
Montgomery
,
J. Plasma Phys.
29
,
525
(
1983
).
12.
R.
Kinney
and
J. C.
McWilliams
,
J. Plasma Phys.
57
,
73
(
1997
).
13.
R.
Kinney
and
J. C.
McWilliams
,
Phys. Rev. E
57
,
7111
(
1998
).
14.
M.
Hossain
,
G.
Vahala
, and
D.
Montgomery
,
Phys. Fluids
28
,
3074
(
1985
).
15.
E.
Weisshaar
,
Geophys. Astrophys. Fluid Dyn.
41
,
141
(
1988
).
16.
W. H.
Matthaeus
,
L. W.
Klein
,
S.
Ghosh
, and
M. R.
Brown
,
J. Geophys. Res.
96
,
5421
(
1991
).
17.
S.
Oughton
,
E. R.
Priest
, and
W. H.
Matthaeus
,
J. Fluid Mech.
280
,
95
(
1994
).
18.
W. H.
Matthaeus
,
S.
Ghosh
,
S.
Oughton
, and
D. A.
Roberts
,
J. Geophys. Res.
101
,
7619
(
1996
).
19.
S.
Oughton
,
J. Plasma Phys.
56
,
641
(
1996
).
20.
V.
Carbone
and
P.
Veltri
,
Geophys. Astrophys. Fluid Dyn.
52
,
153
(
1990
).
21.
S.
Sridhar
and
P.
Goldreich
,
Astrophys. J.
432
,
612
(
1994
).
22.
D. C.
Montgomery
and
W. H.
Matthaeus
,
Astrophys. J.
447
,
706
(
1995
).
23.
C. S.
Ng
and
A.
Bhattacharjee
,
Astrophys. J.
465
,
845
(
1996
).
24.
P.
Goldreich
and
S.
Sridhar
,
Astrophys. J.
485
,
680
(
1997
).
25.
S.
Ghosh
and
M. L.
Goldstein
,
J. Geophys. Res.
99
,
13
351
(
1994
).
26.
W. H.
Matthaeus
,
C. W.
Smith
, and
S.
Oughton
,
J. Geophys. Res.
103
,
6495
(
1998
).
27.
Numerous simulations, including those discussed here, verify that vk≈bk for sufficiently large B0. This is usually explained in terms of the Alfvén effect (Ref. 41).
28.
G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1970).
29.
The fundamental definition for the Taylor microscale is as the curvature of the longitudinal velocity autocorrelation, λT2=〈v12〉/〈(∂1v1)2〉, and for isotropic turbulence this is equal to 5E/Ω (Ref. 28). Since we are primarily interested in the scaling properties, and also we cannot invoke isotropy, we have elected to drop the associated numerical factors here.
30.
A. N.
Kolmogorov
,
C. R. (Dokl.) Acad. Sci. URSS
30
,
301
(
1941
).
31.
Note that the two cases are analogous to the cases considered in Ref. 13, in which the discussion is couched entirely in terms of RMHD.
32.
M. Hossain, P. C. Gray, D. H. Pontius, Jr., W. H. Matthaeus, and S. Oughton, in Proceedings of Solar Wind 8, COSPAR Colloquia Series (Pergamon, Oxford, UK, 1996).
33.
M.
Hossain
,
P. C.
Gray
,
D. H.
Pontius
, Jr.,
W. H.
Matthaeus
, and
S.
Oughton
,
Phys. Fluids
7
,
2886
(
1995
).
34.
M. Lesieur, Turbulence in Fluids (Nijhoff, Dordrecht, The Netherlands, 1990).
35.
S.
Ghosh
,
A. F.
Viñas
, and
M. L.
Goldstein
,
J. Geophys. Res.
99
,
19
289
(
1994
).
36.
F.
Malara
,
L.
Primavera
, and
P.
Veltri
,
J. Geophys. Res.
101
,
21
597
(
1996
).
37.
G. P.
Zank
and
W. H.
Matthaeus
,
J. Geophys. Res.
97
,
17
189
(
1992
).
38.
S.
Ghosh
and
M. L.
Goldstein
,
J. Plasma Phys.
57
,
129
(
1997
).
39.
See also Ref. 36 but note that the ICs in their simulations are not isotropic, so that it is difficult to say whether the observed anisotropy is a consequence of the initial data, nonlinear evolution, or perhaps both factors.
40.
T.
von Kármán
and
L.
Howarth
,
Proc. R. Soc. London, Ser. A
164
,
192
(
1938
).
41.
R. H.
Kraichnan
,
Phys. Fluids
8
,
1385
(
1965
).
This content is only available via PDF.
You do not currently have access to this content.