Resistive drift-wave turbulence in a slab geometry is studied by statistical closure methods and direct numerical simulations. The two-field Hasegawa–Wakatani (HW) fluid model, which evolves the electrostatic potential and plasma density self-consistently, is a paradigm for understanding the generic nonlinear behavior of multiple-field plasma turbulence. A gyrokinetic derivation of the HW model is sketched. The recently developed Realizable Markovian Closure (RMC) is applied to the HW model; spectral properties, nonlinear energy transfers, and turbulent transport calculations are discussed. The closure results are also compared to direct numerical simulation results; excellent agreement is found. The transport scaling with the adiabaticity parameter, which measures the strength of the parallel electron resistivity, is analytically derived and understood through weak- and strong-turbulence analyses. No evidence is found to support previous suggestions that coherent structures cause a large depression of saturated transport from its quasilinear value in the hydrodynamic regime of the HW model. Instead, the depression of transport is well explained by the spectral balance equation of the (second-order) statistical closure when account is taken of incoherent noise.

1.
P. C.
Liewer
,
Nucl. Fusion
25
,
543
(
1985
).
2.
A. J.
Wootton
,
B. A.
Carreras
,
H.
Matsumoto
,
K.
McGuire
,
W. A.
Peebles
,
C. P.
Ritz
,
P. W.
Terry
, and
S. J.
Zweben
,
Phys. Fluids B
2
,
2879
(
1990
).
3.
K. W.
Gentle
,
Nucl. Technol. Fusion
1
,
497
(
1981
).
4.
A.
Hasegawa
and
K.
Mima
,
Phys. Fluids
12
,
87
(
1978
).
5.
P.
Terry
and
W.
Horton
,
Phys. Fluids
25
,
491
(
1982
).
6.
A.
Hasegawa
and
M.
Wakatani
,
Phys. Rev. Lett.
50
,
682
(
1983
).
7.
P. N.
Guzdar
,
J. F.
Drake
,
D.
McCarthy
,
A. B.
Hassam
, and
C. S.
Liu
,
Phys. Fluids B
5
,
3712
(
1993
).
8.
M.
Wakatani
and
A.
Hasegawa
,
Phys. Fluids
27
,
611
(
1984
).
9.
B. D.
Scott
,
H.
Biglari
,
P. W.
Terry
, and
P. H.
Diamond
,
Phys. Fluids B
3
,
51
(
1991
).
10.
A. E.
Koniges
,
J. A.
Crotinger
, and
P. H.
Diamond
,
Phys. Fluids B
4
,
2785
(
1992
).
11.
D.
Biskamp
,
S. J.
Camargo
, and
B. D.
Scott
,
Phys. Lett. A
186
,
239
(
1994
).
12.
S. J.
Camargo
,
D.
Biskamp
, and
B. D.
Scott
,
Phys. Plasmas
2
,
48
(
1995
).
13.
D.
Biskamp
and
A.
Zeiler
,
Phys. Rev. Lett.
74
,
706
(
1995
).
14.
A. E. Koniges and G. G. Craddock, in Current Topics in the Physics of Fluids (Research Trends, Trivandrum, India, 1994), p. 485.
15.
T. S. Pedersen, “Numerical and theoretical investigations of resistive drift wave turbulence,” Ph.D. thesis, Riso. National Laboratory, Roskilde, Denmark, 1995.
16.
F. Y.
Gang
,
P. H.
Diamond
,
J. A.
Crotinger
, and
A. E.
Koniges
,
Phys. Fluids B
3
,
955
(
1991
).
17.
J.
Bowman
,
J. A.
Krommes
, and
M.
Ottaviani
,
Phys. Fluids B
5
,
3558
(
1993
).
18.
G.
Hu
,
J. A.
Krommes
, and
J. C.
Bowman
,
Phys. Lett. A
202
,
117
(
1995
).
19.
S. I. Braginskii, in Reviews of Plasma Physics, edited by M. N. Leontov-ich (Consultants Bureau, New York, 1965), Vol. I, p. 205.
20.
W.
Horton
and
A.
Hasegawa
,
Chaos
4
,
227
(
1994
).
21.
F. L.
Hinton
and
C. W.
Horton
, Jr.
,
Phys. Fluids
14
,
116
(
1971
).
22.
D. H. E.
Dubin
,
J. A.
Krommes
,
C. R.
Oberman
, and
W. W.
Lee
,
Phys. Fluids
26
,
3524
(
1983
).
23.
A.
Zeiler
,
D.
Diskamp
,
J. F.
Drake
, and
P. N.
Guzdar
,
Phys. Plasmas
3
,
2951
(
1996
).
24.
M.
Ottaviani
and
J. A.
Krommes
,
Phys. Rev. Lett.
69
,
2923
(
1992
).
25.
M.
Lesieur
and
J.
Herring
,
J. Fluid Mech.
161
,
77
(
1985
).
26.
J. A. Krommes, in Proceedings of the 1995 ITP Program on Turbulence and Intermittency in Plasmas, edited by R. Sudan and S. Cowley (North-Holland, Amsterdam, in press).
27.
T. H.
Dupree
,
Phys. Fluids
9
,
1773
(
1966
).
28.
T. H.
Dupree
,
Phys. Fluids
10
,
1049
(
1967
).
29.
P. Similon, “Renormalized theory of drift wave turbulence in sheared magnetic fields,” Ph.D. thesis, Princeton University, 1981.
30.
J. A.
Krommes
,
Phys. Fluids
29
,
2756
(
1986
).
31.
J. A. Krommes, in Statistical Plasma Physics, Proceedings of the Workshop of the U.S.-Japan Joint Institute for Fusion Theory Program, February 17–21 1986 (Institute of Plasma Physics, Nagoya University, Japan, 1986), p. 226. See AIP Document No. PAPS PHPAE-04-0655-15 for 15 pages of “Remarks on the clump theory.”
Order by PAPS number and journal reference from the American Institute of Physics, Physics Auxiliary Publication Service, 500 Sunnyside Blvd., Woodbury, NY 11797–2999. Fax: 516-576-2223, e-mail: [email protected]. The price is $1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the Americal Institute of Physics in U. S dollars drawn on a U. S. bank.
32.
J. A.
Krommes
and
C.-B.
Kim
,
Phys. Fluids
31
,
869
(
1988
).
33.
J. A.
Krommes
,
Bull. Am. Phys. Soc.
41
,
1461
(
1996
).
34.
J. A.
Krommes
,
Phys. Plasmas
4
,
655
(
1997
).
35.
R. H.
Kraichnan
,
J. Fluid Mech.
5
,
497
(
1959
).
36.
J. A. Krommes, in Handbook of Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1984), Vol. 2, Chap. 5.5, p. 183.
37.
P. C.
Martin
,
E. D.
Siggia
, and
H. A.
Rose
,
Phys. Rev. A
8
,
423
(
1973
).
38.
R. H.
Kraichnan
,
J. Math. Phys.
2
,
124
(
1961
);
R. H.
Kraichnan
, Erratum:
J. Math. Phys.
3
,
205
(
1962
).
39.
H. A. Rose, “Aspects of the statistical dynamics of classical systems,” Ph.D. thesis, Harvard University, 1974.
40.
R. H. Kraichnan, in Theoretical Approaches to Turbulence, edited by D. L. Dwoyer, M. Y. Hussaini, and R. G. Voight (Springer, New York, 1985), p. 91.
41.
R. H. Kraichnan, in New Perspectives in Turbulence, edited by L. Sirovich (Springer, New York, 1991), Chap. 1, p. 1.
42.
R. H. Kraichnan, in 2nd Symposium on Naval Hydrodynamics, Washington, DC, 1958 (Office of Naval Research, Department of the Navy, Washington, DC, 1958), p. 29.
43.
R. H.
Kraichnan
,
J. Fluid Mech.
41
,
189
(
1970
).
44.
C. E.
Leith
,
J. Atmos. Sci.
28
,
145
(
1971
).
45.
J. A.
Krommes
,
Phys. Rev. E
53
,
4865
(
1996
).
46.
M.
Ottaviani
,
J. C.
Bowman
, and
J. A.
Krommes
,
Phys. Fluids B
3
,
2186
(
1991
).
47.
R. H.
Kraichnan
,
Phys. Fluids
7
,
1723
(
1964
).
48.
B. B. Kadomtsev, Plasma Turbulence (Academic, New York, 1965).
49.
J. A.
Krommes
,
Phys. Fluids
25
,
1393
(
1982
).
50.
J. A. Krommes, in Statistical Physics and Chaos in Fusion Plasmas, edited by C. W. Horton and L. E. Reichl (Wiley, New York, 1984), p. 241.
51.
The numerical coefficient in the Nk3 scaling is small in the presence of many modes [W. P. Dannevik (private communication, 1990);
also see Ref. 53].
52.
Although the Markovian schemes improve the temporal scaling, they degrade the scaling with number of modes Nk. In the Markovian schemes, in addition to Ck(t) the quantity Χkpq, must be advanced for all distinct triads, which number approximately Nk3/6. However, since one generally retains far fewer modes in the closure than in a direct numerical simulation, the overall scaling for the Markovian closures is usually favorable. For extensive discussion, see Ref. 53.
53.
J. C. Bowman, “Realizable Markovian statistical closures: General theory and application to drift-wave turbulence,” Ph.D. thesis, Princeton University, 1992.
54.
J. C. Bowman and J. A. Krommes, “The realizable Markovian closure and realizable test-field model II. Application to anisotropic drift-wave dynamics,” submitted to Phys. Plasmas.
55.
R. H.
Kraichnan
,
Phys. Rev.
113
,
1181
(
1959
).
56.
S. A. Orszag, in Fluid Dynamics, edited by R. Balian and J.-L. Peube (Gordon and Breach, New York, 1977), p. 235.
57.
A Hermitian matrix Ck(t,t′) with the two times treated as continuum matrix indices is positive-semidefinite if −∞dt∫−∞dt′φ*(t)×Ck(t,t′)φ(t′)⩾0, for all generalized functions φ(t) that are continuous almost everywhere (i.e., except possibly on a set of measure zero).
58.
R. H.
Kraichnan
and
D.
Montgomery
,
Rep. Prog. Phys.
43
,
547
(
1980
).
59.
A. E.
Koniges
,
J. A.
Crotinger
,
W. P.
Dannevik
,
G. F.
Carnevale
,
P. H.
Diamond
, and
F. Y.
Gang
,
Phys. Fluids B
3
,
1297
(
1991
).
60.
J. A.
Krommes
and
J. C.
Bowman
,
Bull. Am. Phys. Soc.
33
,
2022
(
1988
).
61.
J. C.
Bowman
,
J. Sci. Comput.
11
,
343
(
1996
).
62.
A. N.
Kolmogorov
,
C. R. Acad. Sci. USSR
30
,
301
(
1941
).
63.
J. A.
Krommes
and
G.
Hu
,
Phys. Plasmas
1
,
3211
(
1994
).
64.
R.
Fjo/rtoft
,
Tellus
5
,
225
(
1953
).
65.
R. H.
Kraichnan
,
Phys. Fluids
10
,
1417
(
1967
).
66.
G. Hu, “Statistical theory of resistive drift-wave turbulence and transport,” Ph.D. thesis, Princeton University, 1995.
67.
R. H.
Kraichnan
,
Phys. Fluids
8
,
1385
(
1965
).
68.
D.
Biskamp
,
S. J.
Camargo
, and
B. D.
Scott
,
Phys. Lett. A
186
,
239
(
1994
).
69.
W.
Horton
,
Phys. Fluids
29
,
1491
(
1986
).
70.
T. D.
de Wit
,
S.
Benkadda
,
P.
Gabbai
, and
A. D.
Verga
,
Phys. Rev. E
52
,
6753
(
1995
).
71.
L. L. LoDestro, B. I. Cohen, R. H. Cohen, A. M. Dimits, Y. Matsuda, W. M. Nevins, W. A. Newcomb, T. J. Williams, A. E. Koniges, W. P. Dannevik, J. A. Crotinger, R. D. Sydora, J. M. Dawson, S. Ma, V. K. Decyk, W. W. Lee, T. S. Hahm, H. Naitou, and T. Kamimura, in Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. II, p. 31.
72.
J. W.
Connor
,
Plasma Phys. Controlled Fusion
30
,
619
(
1988
).
73.
For α≪1, the α term in Eq. (1b) can safely be ignored.
74.
E. A.
Frieman
and
L.
Chen
,
Phys. Fluids
25
,
502
(
1982
).
75.
W. W.
Lee
,
Phys. Fluids
26
,
556
(
1983
).
76.
J. A.
Krommes
,
Phys. Fluids B
5
,
1066
(
1993
).
77.
D. H. E. Dubin and J. A. Krommes, in Long Time Prediction in Dynamics, edited by W. Horton, L. E. Reichl, and V. G. Szebehely (Wiley, New York, 1982), p. 251.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.