Low aspect ratio tokamaks (LATs) can potentially provide a high ratio of plasma pressure to magnetic pressure β and high plasma current I at a modest size. This opens up the possibility of a high-power density compact fusion power plant. For the concept to be economically feasible, bootstrap current must be a major component of the plasma current, which requires operating at high βp. A high value of the Troyon factor βN and strong shaping is required to allow simultaneous operation at a high-β and high bootstrap fraction. Ideal magnetohydrodynamic stability of a range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure profile and shape. The pressure and current profiles are constrained in such a way as to assure complete bootstrap current alignment. Both βN and β are defined in terms of the vacuum toroidal field. Equilibria with βN⩾8 and β∼35%–55% exist that are stable to n= ballooning modes. The highest β case is shown to be stable to n=0,1,2,3 kink modes with a conducting wall.

1.
A.
Sykes
,
Plasma Phys. Controlled Fusion
35
,
1051
(
1993
).
2.
Y.-K. M. Peng, R. J. Colchin, C. L. Hedrick, J. D. Galambos, J. Sheffield, D. J. Strickler, R. A. Blanken, A. Sykes, D. C. Robinson, A. W. Morris, J. Hugill, T. C. Hender, S. K. Erents, and H. R. Wilson, in Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 15th International Conference, Seville, 1994 (International Atomic Energy Agency, Vienna, 1995), Vol. 2, p. 643.
3.
R. D. Stambaugh, V. S. Chan, R. L. Miller, and M. J. Schaffer, “The spherical tokamak path to fusion power,” submitted to Fusion Technol.
4.
S. P.
Hirshman
,
Phys. Fluids
31
,
3150
(
1988
).
5.
R. L.
Miller
and
J. W.
VanDam
,
Nucl. Fusion
28
,
2101
(
1987
).
6.
Multigrid code from P. M. de Zeeuw, Centre for Mathematics & Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
P. M.
de Zeeuw
,
J. Comput. Appl. Math.
33
,
1
(
1990
).
7.
Y. R.
Lin-Liu
and
R. L.
Miller
,
Phys. Plasmas
2
,
1666
(
1995
).
8.
L. C.
Bernard
,
F. J.
Helton
, and
R. W.
Moore
,
Comput. Phys. Commun.
24
,
377
(
1981
).
9.
H.
Lütjens
,
A.
Bondeson
, and
A.
Roy
,
Comput. Phys. Commun.
69
,
287
(
1992
).
10.
R.
Gruber
,
F.
Troyon
,
D.
Berger
,
L. C.
Bernard
,
S.
Rousset
,
R.
Schreiber
,
W.
Kerner
,
W.
Schneider
, and
K. V.
Roberts
,
Comput. Phys. Commun.
21
,
323
(
1981
).
11.
J. M.
Greene
and
M. S.
Chance
,
Nucl. Fusion
21
,
453
(
1981
).
12.
P.
Gohil
,
M.
Ali Mahdavi
,
L.
Lao
,
K. H.
Burrell
,
M. S.
Chu
,
J. C.
DeBoo
,
C. L.
Hsieh
,
N.
Ohyabu
,
R. T.
Snider
,
R. D.
Stambaugh
, and
R. E.
Stockdale
,
Phys. Rev. Lett.
61
,
1603
(
1988
);
L. L.
Lao
,
E. J.
Strait
,
T. S.
Taylor
,
M. S.
Chu
,
T.
Ozeki
,
W.
Howl
,
R. D.
Stambaugh
,
K. H.
Burrell
,
M. S.
Chance
,
J. C.
DeBoo
,
P.
Gohil
,
J. M.
Greene
,
R. J.
Groebner
,
A. G.
Kellman
,
M.
Ali Mahdavi
,
T. H.
Osborne
,
G. D.
Porter
, and
A. D.
Turnbull
,
Plasma Phys. Controlled Fusion
31
,
509
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.