The role of the clump lifetime τcl, logarithmically dependent on small scales, in determining the fluctuation level for forced, dissipative turbulence is reconsidered with the aid of an exactly solvable rapid-change model of passive advection. It is shown in mathematical detail that the common procedure of approximating the steady-state fluctuation level I by τclP, where P is the production rate or source of fluctuations, is invalid when a clean distinction can be made between energy-containing and inertial ranges. The correct result is I≈τDP, where τD is a macroscopic diffusion time that does not depend on the small scales.

1.
T. H.
Dupree
,
Phys. Fluids
15
,
334
(
1972
).
2.
T.
Boutros-Ghali
and
T. H.
Dupree
,
Phys. Fluids
24
,
1839
(
1981
).
3.
P. W. Terry and P. H. Diamond, in Statistical Physics and Chaos in Fusion Plasmas, edited by C. W. Horton, Jr. and L. E. Reichl (Wiley, New York, 1984), p. 335.
4.
G. S.
Lee
and
P. H.
Diamond
,
Phys. Fluids
29
,
3291
(
1986
).
5.
J. A.
Krommes
,
Phys. Fluids
29
,
2756
(
1986
).
6.
See AIP Document No. PAPS PHPAE-04-655-15. J. A. Krommes, “Remarks on the clump theory,” in Statistical Plasma Physics: Proceedings of the Workshop of the U.S.-Japan Joint Institute for Fusion Theory Program, 17-21 February, 1986, Institute of Plasma Physics, Nagoya University of Japan, 1986, p. 226.
Order by PAPS number and journal reference, from the American Institute of Physics, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard, Woodbury, New York 11797-2999. Fax: 516-576-2223, e-mail: [email protected]. The price is $.150 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics in U.S. dollars drawn on a U. S. bank.
7.
J. A.
Krommes
and
C.-B.
Kim
,
Phys. Fluids
31
,
869
(
1988
).
8.
H.
Biglari
,
P. H.
Diamond
, and
P. W.
Terry
,
Phys. Fluids
31
,
2644
(
1988
).
9.
H.
Biglari
,
P. H.
Diamond
, and
P. W.
Terry
,
Phys. Fluids B
2
,
1
(
1990
).
10.
T. S.
Hahm
,
Phys. Plasmas
1
,
2940
(
1994
).
11.
T. S.
Hahm
and
K.
Burrell
,
Phys. Plasmas
2
,
1648
(
1995
).
12.
R. H.
Kraichnan
,
Phys. Fluids
11
,
945
(
1968
).
13.
R. H.
Kraichnan
,
Phys. Rev. Lett.
72
,
1016
(
1994
).
14.
T. H.
Dupree
,
Phys. Fluids
9
,
1773
(
1966
).
15.
D.
DuBois
and
M.
Espedal
,
Plasma Phys.
20
,
1209
(
1978
).
16.
J. A.
Krommes
and
R.
Kleva
,
Phys. Fluids
22
,
2168
(
1979
).
17.
J. A. Krommes, in Handbook of Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1984), Vol. 2, Chap. 5.5, p. 183.
18.
T. H.
Dupree
,
Phys. Rev. Lett.
25
,
789
(
1970
).
19.
T. H.
Dupree
,
Phys. Fluids
17
,
100
(
1974
).
20.
T. H.
Dupree
,
Phys. Fluids
21
,
783
(
1978
).
21.
T. H.
Dupree
,
Phys. Fluids
10
,
1049
(
1967
).
22.
J. B.
Taylor
,
Phys. Rev. Lett.
32
,
199
(
1974
).
23.
J. A.
Krommes
and
P.
Similon
,
Phys. Fluids
23
,
1553
(
1980
).
24.
J. A. Krommes, in Theoretical and Computational Plasma Physics (International Atomic Energy Agency, Vienna, 1978), p. 405.
25.
P. C.
Martin
,
E. D.
Siggia
, and
H. A.
Rose
,
Phys. Rev. A
8
,
423
(
1973
).
26.
R. H.
Kraichnan
,
J. Fluid Mech.
5
,
497
(
1959
).
27.
S. A.
Orszag
and
R. H.
Kraichnan
,
Phys. Fluids
10
,
1720
(
1967
).
28.
R. H.
Kraichnan
,
Phys. Fluids
13
,
569
(
1970
).
29.
C. E.
Leith
,
J. Atmos. Sci.
28
,
145
(
1971
).
30.
C. E.
Leith
and
R. H.
Kraichnan
,
J. Atmos. Sci.
29
,
1041
(
1972
).
31.
A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, 2nd ed. (Springer, New York, 1992).
32.
G.
Benettin
,
L.
Galgani
, and
J.-M.
Strelcyn
,
Phys. Rev. A
14
,
2338
(
1976
).
33.
T. H. Dupree (private communication, 1981).
34.
G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, UK, 1953).
35.
R. H.
Kraichnan
,
Phys. Fluids
6
,
1603
(
1963
).
36.
J. A.
Krommes
,
Phys. Fluids
25
,
1393
(
1982
).
37.
J.
Bowman
,
J. A.
Krommes
, and
M.
Ottaviani
,
Phys. Fluids B
5
,
3558
(
1993
).
38.
G.
Hu
,
J. A.
Krommes
, and
J. C.
Bowman
,
Phys. Lett. A
202
,
117
(
1995
).
39.
G. Hu, J. A. Krommes, and J. C. Bowman, “Statistical theory of resistive drift-wave turbulence and transport,” submitted to Phys. Plasmas.
40.
G. I.
Taylor
,
Proc. London Math. Soc. Ser. 2
20
,
196
(
1921
);
reprinted in Turbulence: Classic Papers on Statistical Theory, edited by S. K. Friedlander and L. Topper (Interscience, New York, 1961), p. 1. For the advection of a passive scalar, the analogous length was introduced by
S.
Corrsin
,
J. Aeronaut. Sci.
18
,
417
(
1951
). For simplicity, in the present paper I shall use “Taylor microscale” as a generic term applicable to all correlation functions, whatever their origin.
41.
J. A.
Krommes
and
G.
Hu
,
Phys. Plasmas
1
,
3211
(
1994
).
42.
U. Frisch, Turbulence (Cambridge University Press, Cambridge, UK, 1995).
43.
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1971).
44.
A. N.
Kolmogorov
,
C. R. Acad. Sci. USSR
30
,
301
(
1941
).
45.
R. H.
Kraichnan
,
J. Fluid Mech.
47
,
525
(
1971
).
46.
J. C.
Bowman
,
J. Fluid Mech.
306
,
167
(
1996
).
47.
In interpreting this result in the context of Eq. (76), one must treat k* as the kmin of the earlier formulas, and must match to the k−5/3 law of the inverse energy cascade. The details are not important for the present paper. Some related calculations were given by
M.
Ottaviani
and
J. A.
Krommes
,
Phys. Rev. Lett.
69
,
2923
(
1992
).
48.
One may ponder why the present model does not lead to the Corrsin- Obukhov law E(k)∼k−5/3 [see the discussion of Fig. 8.11 in H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1972)]. Instead, for Kolmogorov turbulence with ζ(η) = 2/3, one finds η2 = 4/3 and E(k)ζk−7/3. The discrepancy arises from the rapidchange assumption, which dictates that diffusion operates even on local scales. If τd were to be replaced by τeddy in Eqs. (97) and (98), so that τT = τteddy, the Corrsin-Obukhov result would be recovered. However, Eqs. (97) and (98) are correct for the present model.
49.
I. Stakgold, Green’s Functions and Boundary Value Problems (Wiley, New York, 1979).
50.
J. A. Krommes, “Systematic statistical theories of plasma turbulence and intermittency: Current status and future prospects,” in Proceedings of the 1995 ITP Program on Turbulence and Intermittency in Plasmas, edited by R. Sudan and S. Cowley (North-Holland, Amsterdam, in press).
51.
J. C. Bowman, “Realizable Markovian statistical closures: General theory and application to drift-wave turbulence,” Ph.D. thesis, Princeton University, 1992.
52.
The calculation in Ref. 4 involved anisotropic, inhomogeneous turbulence. However, the poloidal wave number ky plays much the same role as does k in the isotropic models. The ky spectrum calculated in Ref. 4 does not satisfy ζ2 = 0.
53.
J. W.
Connor
,
Plasma Phys. Controlled Fusion
30
,
619
(
1988
).
54.
J. A.
Krommes
,
Bull. Am. Phys. Soc.
41
,
1461
(
1996
).
55.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw- Hill, New York, 1953), Vol. I.
56.
J. A.
Krommes
and
R. A.
Smith
,
Ann. Phys.
177
,
246
(
1987
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.