Plasma-screening effects are investigated on antiscreening channels for excitation of a one-electron target by a one-electron projectile in dense plasmas. The interaction Hamiltonian in dense plasmas is obtained by an appropriate form of the nonspherical Debye–Hückel potentials. Semiclassical straight-line trajectory method is applied to the ion projectile path in order to visualize the antiscreening transition probability in dense plasmas as a function of the impact parameter and the collision energy. The plasma screening effects reduce the transition probabilities, especially, in the dipole–dipole transition. The maximum position of the transition probability is receding from the target nucleus with increasing projectile energy for the dipole–dipole and dipole–quadrupole excitations. However, in the quadrupole–quadrupole excitation, the maximum position is getting closer to the target nucleus with increasing projectile energy. The quadrupole transitions (dipole–quadrupole and quadrupole–quadrupole) show the second maximum which is due to the double peaks of the 2s radial distribution function.

1.
J. Eicher and W. E. Meyerhof, Relativistic Atomic Collisions (Academic, New York, 1995), Chap. 7.
2.
J. C.
Weisheit
,
Adv. At. Mol. Phys.
25
,
101
(
1988
).
3.
Y.-D.
Jung
,
Phys. Plasmas
2
,
332
(
1995
).
4.
Y.-D.
Jung
,
Phys. Plasmas
2
,
987
(
1995
).
5.
J.-S.
Yoon
and
Y.-D.
Jung
,
Phys. Plasmas
3
,
3291
(
1996
).
6.
J. Weicheit, Atomic, Molecular, and Optical Physics Handbook, edited by G. W. Drake (American Institute of Physics, Woodbury, NY, 1996), p. 978.
7.
H.
Tawara
,
NIFS-DATA
25
(
1995
), and private communication (
1996
).
8.
E. C.
Montenegro
and
W. E.
Meyerhof
,
Adv. At. Mol. Phys.
34
,
249
(
1994
).
9.
J.
Wang
and
J. H.
McGuire
,
Phys. Rev. A
51
,
504
(
1995
).
10.
J.
Bang
and
J. M.
Hansteen
,
Mat. Fys. Medd. Dan. Vid. Selsk.
31
,
1
(
1959
).
11.
Y.-D.
Jung
,
Astrophys. J.
409
,
841
(
1993
).
12.
Y.-D.
Jung
,
Phys. Fluids B
5
,
3432
(
1993
).
13.
H. A. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 3rd. ed. (Benjamin/Cumming, Menlo Park, 1986), Chap. 19.
14.
M. Abramowitz and A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 360.
15.
H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Academic, New York, 1957), Chap. 1.
This content is only available via PDF.
You do not currently have access to this content.